• Title/Summary/Keyword: Sawing Efficiency

Search Result 11, Processing Time 0.021 seconds

Relation Between Wire Sawing-damage and Characteristics of Single Crystalline Silicon Solar-cells (와이어 소잉 데미지 층이 단결정 실리콘 태양전지 셀 특성에 미치는 영향)

  • Kim, Il-Hwan;Park, Jun-Seong;Park, Jea-Gun
    • Current Photovoltaic Research
    • /
    • v.6 no.1
    • /
    • pp.27-30
    • /
    • 2018
  • The dependency of the electrical characteristics of silicon solar-cells on the depth of damaged layer induced by wire-sawing process was investigated. To compare cell efficiency with residual sawing damage, silicon solar-cells were fabricated by using as-sawn wafers having different depth of saw damage without any damaged etching process. The damaged layer induced by wire-sawing process in silicon bulk intensely influenced the value of fill factor on solar cells, degrading fill factor to 57.20%. In addition, the photovoltaic characteristics of solar cells applying texturing process shows that although the initial depth of saw-damage induced by wire-sawing process was different, the value of short-circuit current, fill-factor, and power-conversion-efficiency have an almost same, showing ~17.4% of cell efficiency. It indicated that the degradation of solar-cell efficiency induced by wire-sawing process could be prevented by eliminating all damaged layer through sufficient pyramid-surface texturing process.

A study on the characteristics of intelligent sawing system for band saw (띠톱기계의 스마트 톱 절삭 시스템의 특성에 관한연구)

  • LUO, luPing;DING, zelin;DING, shengxia;JIANG, Ping;FAN, li;XIAO, leihua;PAN, bosong;An, Boyoung;Eum, Younseal;Han, Changsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.195-204
    • /
    • 2020
  • To help solve the problems of how to set the optimal sawing force and the optimal controller parameters for different sawing conditions, a mathematical model of a proposed sawing system was established according to the principle of sawing force control. The conventional PID control method was then used for further research of the closed-loop control of the sawing force. Finally, through simulation and experimental research, the influence rule of the controller parameters and sawing load on the control performance and the relationships between the sawing width and controller parameters (proportion coefficient) and the sawing force setting value were obtained, from which a system scheme for intelligent sawing control of a band sawing machine was proposed. The research shows that the sawing efficiency of the intelligent sawing system was 18.1 (48%) higher than that of the original sawing system when sawing a grooved section sawing material, which verifies the good control effect of the proposed scheme.

A Study on Sawing and Utilization Structure of Lumber from Small - diameter Logs of Larix leptolepis (낙엽송 소경재(小徑材)의 제재이용구조(製材利用構造)에 관(關)한 연구(硏究))

  • Lee, Choon-Taek;Kim, Su-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.53-68
    • /
    • 1990
  • This research has been executed for maximization of lumber yield and more efficient use of small diameter logs. Sample logs from thinnings carne from densed artificial stands at the Kwangnung Experimental Forests situated in the central region of Korean peninsula. Species of sample logs were obtained to execute sawing and strength test for larch, and lumber strength test in full size for pitch pine and Korean pine. A survey on sawmills consuming domestic logs was carried out to know sawmill production, costs and utilization structure of lumber as a guide to business analysis. Results showed that sawing pattern from small logs less than 15cm in diameter was necessary to cut 9cm by 9cm square per one log in order to obtain high lumber recovery and provide for wide market needs. The total lumber yield of squares plus side boards was 56 percent to 58 percent from small logs and the yield for log sweep in 30 percent decreased by 24.5 percent in sawing production, compared to yield for straight logs. In sawing efficiency, production of lumber by twin band saw could be improved 238 percent higher than lumber of the same species produced by conventional sawmilling methods, and sawing accuracy with twin band saw was much higher at the lumber production than band saw. Lumber from the small larch logs has shown 70 knots per $m^2$ on its faces and also lumber showed lots of face checkings by air drying on the yard, compared to other species. MOR in bending of lumber in full size from small logs of larch was found ranging from 380kg/$cm^2$ to 460kg/$cm^2$, resulting in 40 percent less than the strength from clear small specimens. In lumber containing knots, cross grain, etc, longitudinal stress wave speed was delayed about 48 percent by defects in lumber from both larch and pitch pine logs. The surveyed sample sawmills consumed the domestic logs at the rate of 54 percent to 84 percent in the total timber consumption, showing high consumption at mills located in the mountains.

  • PDF

Analysis of Inter-Particle Distance Distribution in a Diamond Sawing Blade

  • Lee, Hyun-Woo;Kim, Yong-Seog
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2003.10a
    • /
    • pp.62-63
    • /
    • 2003
  • The inter-particle distance between diamonds on the segment surface of sawing blade predicted theoretically and measured experimentally followed a Gamma or Weibull function, rather than a normal distribution function. These results suggest that random dispersion of diamond particles in the segment may not be an efficient way of improving cutting efficiency of the blade.

  • PDF

Industry Applicable Future Texturing Process for Diamond wire sawed Multi-crystalline Silicon Solar Cells: A review

  • Ju, Minkyu;Lee, Youn-Jung;Balaji, Nagarajan;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Current major photovoltaic (PV) market share (> 60%) is being occupied by the multicrystalline (mc)-silicon solar cells despite of low efficiency compared to single crystalline silicon solar cells. The diamond wire sawing technology reduces the production cost of crystalline silicon solar cells, it increases the optical loss for the existing mc-silicon solar cells and hence its efficiency is low in the current mass production line. To overcome the optical loss in the mc-crystalline silicon, caused by the diamond wire sawing, next generation texturing process is being investigated by various research groups for the PV industry. In this review, the limitation of surface structure and optical loss due to the reflectivity of conventional mc-silicon solar cells are explained by the typical texturing mechanism. Various texturing technologies that could minimize the optical loss of mc-silicon solar cells are explained. Finally, next generation texturing technology to survive in the fierce cost competition of photovoltaic market is discussed.

The Mechanical Modeling and design of saw frame in band sawing machine (띠톱기계 톱대의 역학적 모델링 및 설계)

  • LUO, luPing;DING, zelin;DING, shengxia;JIANG, Ping;FAN, li;XIAO, leihua;PAN, bosong;An, Boyoung;No, Joonkkyu;Li, Wenqi;Han, Changsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.390-397
    • /
    • 2019
  • A mechanical model of band sawing saw frame was established according to an analysis of a commonly used saw-frame structure diagram to overcome the problems of low service life, substandard cutting precision and efficiency, and high manufacturing cost caused by the unreasonable design of saw frame. Taking a particular type of sawing machine as an example, stress cycle analysis of the saw blade was carried out according to the mechanical model of the saw frame, and the fatigue analysis model of the most dangerous cross-section point that was most prone to fatigue failure of the saw blade was then established. The fatigue analysis result was used as the basis for the improved design of the saw frame, and the improved detailed saw-frame design parameters were obtained. The results suggested that the saw frame system is much more compact and the saw blade force met the fatigue strength requirements through the improved design. In addition, the service life of the saw blade and the cutting precision were increased. The established mechanical model of the saw frame in this paper is used widely and has high practical application values.

A Study on the used Commutator of Sawing Machine (정류자를 이용한 절삭기계 개발에 관한 연구)

  • Choi, Jae-Hyok;Lee, Jong-Hyung;Lee, Chang-Heon;Byun, Jae-Hyuk;Lee, Jae-Yul;Ro, Seung-Hoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.3
    • /
    • pp.121-125
    • /
    • 2008
  • Commutator which plays the major role in switching electric currents from AC to DC is composed of copper and molding compound. The longevity of the DC motors are mostly hampered by the improper machining of the parts. Smooth surface will be mandatory to create the proper air gap of the commutator. In this thesis the selection of the proper materials and tools, the design and analysis of machine structure and the final test procedures have been investigated to achieve the smooth cut surface of the commutators. The performance and the product of the newly manufactured machine has been compared with those of the existing one. And the test result shows the new sawing machine has better overall efficiency and durability.

  • PDF

Quality evaluation of diamond wire-sawn gallium-doped silicon wafers

  • Lee, Kyoung Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.3
    • /
    • pp.119-123
    • /
    • 2013
  • Most of the world's solar cells in photovoltaic industry are currently fabricated using crystalline silicon. Czochralski-grown silicon crystals are more expensive than multicrystalline silicon crystals. The future of solar-grade Czochralski-grown silicon crystals crucially depends on whether it is usable for the mass-production of high-efficiency solar cells or not. It is generally believed that the main obstacle for making solar-grade Czochralski-grown silicon crystals a perfect high-efficiency solar cell material is presently light-induced degradation problem. In this work, the substitution of boron with gallium in p-type silicon single crystal is studied as an alternative to reduce the extent of lifetime degradation. The diamond-wire sawing technology is employed to slice the silicon ingot. In this paper, the quality of the diamond wire-sawn gallium-doped silicon wafers is studied from the chemical, electrical and structural points of view. It is found that the characteristic of gallium-doped silicon wafers including texturing behavior and surface metallic impurities are same as that of conventional boron-doped Czochralski crystals.

Tool Wear of the Tungsten Carbide Tipped Circular Saw (초경팁 납접형 둥근톱의 공구 마멸)

  • Lee, Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.228-236
    • /
    • 2002
  • In this study, the carbon steels, SM20C were machined with the tungsten carbide tipped circular saw to clarify the cutting-off characteristics in terms of tool wear. The results show that an improved performance in view of both the tool wear and the cutting efficiency was obtained by using oil base cutting fluid at the cutting speed of 100m/min with the feed of 0.06mm/tooth. The rake angle of 10$^{\circ}$ , clearance angle of 8$^{\circ}$ , nose radius of R0.1mm, and end cutting edge champer of 0.1mm$\times$25$^{\circ}$ are believed as the best tool geometries. The tool wear decreases due to using the saw of the disk of STS5 and the tool material of P30.

Development of Air-powered Handpiece for Surgical Operation (외과 수술용 Air-Powered Handpiece 개발)

  • 윤길상;이영훈;허영무;서태일;최길운
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.188-193
    • /
    • 2004
  • The purpose of this paper is concerned with a development of an air-powered handpiece for surgical operation. The handpiece is the tool of surgical instruments and it can be used to interchange multiple attachments for drilling, pinning, sawing, driving screws and reaming. Most of domestic medical instruments bring in overseas and the air-powered handpiece imported from foreign countries at 100% too. Therefore we develop new air powered handpiece. we research in 2D and 3D modeling, design of air line, analyze structure. The air-powered handpiece composes of body, power supply air-line, elements for mechanical power transmission, attachment, and surgical tools. The handpiece is developed by several processes that 3D design, machining, heat treatment and coating. The developed handpiece is experimented to confirm check the efficiency.