• Title/Summary/Keyword: Savonius

Search Result 31, Processing Time 0.038 seconds

Numerical and experimental analysis of a 3D printed Savonius rotor with built-in extension plate

  • Altan, Burcin Deda;Kovan, Volkan;Altan, Gurkan
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • In this study, the enhancement of the conventional Savonius wind rotor performance with extension plate has been investigated experimentally and numerically. Experimental models used in the study have been produced with 3D (three dimensional) printing, which is one of the rapid prototyping techniques. Experiments of produced Savonius wind rotor models have been carried out in a wind tunnel. CFD (Computational Fluid Dynamics) analyses have been performed under the same experimental conditions to ensure that experiments and numerical analyses are supported to each other. An additional extension plate has been used in order to enhance the performance of the conventional Savonius wind rotor with a gap distance between blades. It can be called modified Savonius rotor or Savonius rotor with built-in extension plate. Thus, the performance of the rotor has been enhanced without using additional equipment other than the rotor itself. Numerical and experimental analyses of Savonius wind rotor models with extension plate have been carried out under predetermined boundary conditions. It has been found that the power coefficient of the modified Savonius rotor is increased about 15% according to the conventional Savonius rotor.

Performance analysis of a 3 bladed & 5 bladed savonius rotor for wave energy conversion by CFD

  • Zullah, Mohammed Aisd;Prasad, Deepak;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.628-629
    • /
    • 2009
  • A variety of technologies have already been developed to capture energy from the ocean waves, this one is simple to construct. Rather then looking at the surface waves, the technique used lets the waters current beneath the waves directly drive the rotors. The novel ocean wave energy convertor consists of savonius rotor which is mounted in the ocillating water column (OWC) chamber. This study investigates the performance of a 3 blade and 5 bladed savonius rotor under same wave condition using commercial CFD code. Initially the performance analysis of savonius type turbine have been carried out with conventional three bladed curved rotors. From the experieneces of the simulations, 5 bladed savonius rotor have been developed and studied. Performace caracteristics of the 5 bladed savonius rotor has been evaluated and the results obgtained are comopared with the conventional three bladed curved rotors.

  • PDF

Numerical analysis on the flow noise characteristics of 300W Savonius-type vertical-axis wind turbines (300W급 Savonius 형 수직축 풍력발전기의 유동소음특성에 관한 수치적 연구)

  • Kim, Sanghyoen;Lee, Gwangse;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.725-730
    • /
    • 2012
  • In this paper, flow noise characteristics of Savonius-type vertical-axis wind turbines are numerically investigated using hybrid CAA techniques. High frequency harmonics as well as BPF components are identified in the predicted noise spectra from a Savonius wind turbine. As the BPF components belong to infrasound, the higher harmonic components affects human response dominantly. Further analysis is performed to investigate the reason causing the higher frequency harmonic noise by changing operational conditions of a Savonius wind turbine. Based on this result, it is revealed that the frequency of higher harmonic components is determined by the radius of blades and angular velocity of Savonius wind turbine.

  • PDF

Numerical Analysis on the Flow Noise Characteristics of Savonius Wind Turbines (사보니우스 풍력발전기의 유동소음특성에 관한 수치적 연구)

  • Kim, Sanghyeon;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.6
    • /
    • pp.502-511
    • /
    • 2013
  • Noise performance of small wind turbines is critical since these are generally installed near the community. In this study, flow noise characteristics of Savonius wind turbines are numerically investigated. Flow field around the turbine are computed by solving unsteady RANS equation using CFD techniques and the radiated noise are predicted by applying acoustic analogy to the computed flow data. Parametric study is then carried out to investigate the effects of operating conditions and geometric design factors of the Savonius wind turbine. Tonal noise components with higher harmonic frequency than the BPF are identified in the predicted noise spectra from a Savonius wind turbine. The end-plates and helical blades are shown to reduce overall noise levels. These results can be used to design low-noise Savonius wind turbines.

Numerical analysis on the low noise designs of Savonius wind turbines by using phase difference in vortex shedding (와류이탈 위상차를 이용한 사보니우스형 풍력터빈의 소음 저감 설계에 관한 수치적 연구)

  • Kim, Sanghyeon;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.166-171
    • /
    • 2013
  • In this study, low noise designs of a Savonius wind turbines are numerically investigated. From a previous study, it was found that the high harmonic components whose fundamental frequency is higher than the BPF were found to be dominant in noise spectrum of a Savonius wind turbine. On a basis of this observation, S-shaped blade tip is proposed as a low design factors that decrease wind turbine noise by inducing phase differences in vortex shedding. The conventional Savonius and S-shaped turbines are investigated using Hybrid CAA method where flow field around the turbine are computed using CFD techniques and the radiated noise are predicted by applying acoustic analogy to the computed flow data. Noise reductions by these design factors are confirmed by comparing the predicted noise levels from these turbines.

  • PDF

A design of vertical axis wind power generating system combined with Darrieus-Savonius for adaptation of variable wind speed (다변풍속 적응형 Darrieus-Sauonius 초합 수직푹 풍력발전 시스템의 설계)

  • 서영택;오철수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.185-192
    • /
    • 1996
  • This paper presents a design of vertical axis Darrieus wind turbine combine with Savonius for wind-power generating system to be adapted for variable wind speed. The wind turbine consists of two troposkien- and four Savonius-blades. Darrieus turbine is designed with diameter 9.4[m], chord length 380[mm], tip speed ratio 5. Savonius turbine is designed with diameter 1.8[m], height 2[m], tip speed ratio 0.95. The design of turbine is laid for the main data of rated wind speed 10[m/s], turbine speed 101.4[rpm]. The generating power is estimated to maximum power 20[kW], and this is converted to commercial power line by means of three phase synchronous generator-inverter system. Generating system is designed for operation on VSVF(variable speed variable frequency) condition and constant voltage system.

  • PDF

An Experimental Study on a Windheat Generation System with a Savonius Wind Turbine

  • Kim, Young-Jung;Ryou, Young-Sun;Kang, Geum-Choon;Paek, Yee;Yun, Jin-Ha;Kang, Youn-Ku
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.65-69
    • /
    • 2005
  • A windheat generation system with a Savonius windturbine was developed and the performance was evaluated through field tests. The system consisted of a heat generation drum, heat exchanger, water storage tank, and two circulation pumps. Frictional heat is created by rotation of a rotor inside the drum containing thermo oil, and was used to heat water. In order to estimate the capacity of this windheat generation system, weather data was collected for one year at the site near the windheat generation system. Wind Power from the savonius wind turbine mill was transmitted to the heat generation system with an one-to-three gear system. Starting force to rotate the savonius wind turbine and the whole system including the windheat generation system were 1.0 and 2.5 kg, respectively. Under the outdoor wind condition, maximum speed of the rotor in the drum was 75rpm at wind speed 6.5 m/sec, which was not fast enough to produce heat for greenhouse heating. Annual cumulative hours for wind speeds greater than 5 m/sec at height of 10, 20, 30 m were 190, 300 and 1020 hrs, respectively. A $5^{\circ}C$ increase in water temperature was achieved by the windheat generation system under the tested wind environment.

  • PDF

Performance analysis of Savonius Rotor for Wave Energy Conversion using CFD

  • Zullah, Mohammed Aisd;Choi, Young-Do;Kim, Kyu-Han;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.600-605
    • /
    • 2009
  • A general purpose viscous flow solver Ansys CFX is used to study a Savonius type wave energy converter in a 3D numerical viscous wave tank. This paper presents the results of a computational fluid dynamics (CFD) analysis of the effect of blade configuration on the performance of 3 bladed Savonius rotors for wave energy extraction. A piston-type wave generator was incorporated in the computational domain to generate the desired incident waves. A complete OWC system with a 3-bladed Savonius rotor was modeled in a three dimensional numerical wave tank and the hydrodynamic conversion efficiency was estimated. The flow over the rotors is assumed to be two-dimensional (2D), viscous, turbulent and unsteady. The CFX code is used with a solver of the coupled conservation equations of mass, momentum and energy, with an implicit time scheme and with the adoption of the hexahedral mesh and the moving mesh techniques in areas of moving surfaces. Turbulence is modeled with the k.e model. Simulations were carried out simultaneously for the rotor angle and the helical twist. The results indicate that the developed models are suitable to analyze the water flows both in the chamber and in the turbine. For the turbine, the numerical results of torque were compared for all the cases.

  • PDF

Numerical Simulation and Visualization of The Flow Around Savonius Rotor

  • Miyashita Kazuko;Kawamura Tetuya
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.258-259
    • /
    • 2003
  • Flow around Savonius rotor is studied by means of the numerical simulation. Three-dimensional incompressible Navier-Stokes equations are solved numerically. Overgrid system is employed in order to enable the flow calculation of complex geometry. The basic equations in each region are solved by using the standard MAC method. The physical quantities such as the velocity and the pressure among each region are transferred through the overlapping region which is common in each region. Some numerical results of static and rotating rotor will be presented.

  • PDF

Numerical Analysis on the Low Noise Designs of Savonius Wind Turbines by Inducing Phase Difference in Vortex Shedding (와류이탈 위상차를 이용한 사보니우스형 풍력터빈의 소음 저감 설계에 관한 수치적 연구)

  • Kim, Sanghyeon;Cheong, Cheolung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.269-274
    • /
    • 2014
  • In this study, low noise designs for a Savonius wind turbine were numerically investigated. As was reported in our previous study, the harmonic components with a fundamental frequency higher than the BPF were identified as being dominant in the noise spectrum of a Savonius wind turbine, and these components were a result of vortex shedding. On a basis of this observation, an S-shaped blade tip is proposed as a means of reducing the noise generated by small vertical(Savonius) wind turbines. This blade induces phase differences in the shedding vortices from the blades, and thus reduces the noise from the wind turbine. The aerodynamic noise characteristics of the conventional and "S-shaped" Savonius turbines were investigated by using the Hybrid CAA method where the flow field around the turbine is computed using the CFD techniques and the radiated noise are predicted by applying acoustic analogy to the computed flow field data. The degree of noise reduction resulting from the proposed design and its reduction mechanism were confirmed by comparing the predicted noise spectrum of these turbines and the flow characteristics around them.