• 제목/요약/키워드: Sauter Mean Diameter (SMD)

검색결과 160건 처리시간 0.019초

이멀션유 정적믹서의 혼합특성 연구 (Mixing Characteristics of Static Mixers for Emulsion Oil)

  • 김기성;박상규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 추계학술대회 논문집(Proceeding of the KOSME 2000 Autumn Annual Meeting)
    • /
    • pp.91-98
    • /
    • 2000
  • The fuels of water-in-oil emulsion have a potential of reducing PM(Particulate Matter) and NOx emissions, and increassing combustion efficiency in the furnaces and the burners. For making the most of the beneficial of the secondary atomization due to the microexplosion, the water droplets distributed in the oil must have the optimal sizes. The purpose of this paper is to investigate the water droplet size distribution characteristics of the different types of the static mixers. For analysing the size distribution characteristics efficiently, image analysis system was constructed and an appropriate image processing algorithm was developed. Two kinds of static mixers: Kenics type and RF type, were tested. As a results, RF type static mixer shows a better characteristics in the mean drop sizes, particularly in the condition of high water content.

  • PDF

이멀션유용 방사상 핀 정적믹서 개발 (Development of Radial Fin Static Mixers for Emulsion Oil)

  • 김기성;박상규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권4호
    • /
    • pp.904-911
    • /
    • 2001
  • The fuels of water-in-oil emulsion have a potential of reducing PM(Particulate Matter) and NOx emissions, and increasing combustion efficiency in the furnaces and the burners. For making the most of the beneficial of the secondary atomization due to the microexplosion, the water droplets distributed in the oil must have the optimal sizes. The purpose of this paper is to investigate the water droplet size distribution characteristics of the different types of the static mixers. For analysis the size distribution characteristics efficiently, image analysis system wes constructed and an appropriate image processing algorithm was developed. Two kinds of static mixers: Kenics type and RF type, were tested. As a results, RF type static mixer shows a better characteristics in the mean drop size, particularly in the condition of high water content.

  • PDF

로켓 산화제 과잉 예연소기용 분사기의 고압 분무특성 연구 (Spray Characteristics of the Oxidizer-rich Preburner Injector in High Pressure Environments)

  • 양준호;최성만
    • 한국추진공학회지
    • /
    • 제12권2호
    • /
    • pp.48-56
    • /
    • 2008
  • 액체로켓 예연소기의 산화제 과잉 연소는 매우 어려운 과업이다. 이를 위해서는 작동 조건에서 좋은 혼합특성을 갖는 분사기를 설계하는 것이 무엇보다 중요하다. 따라서 고압환경에서 로켓 산화제 과잉 예연소기용 분사기의 분무특성을 실험을 통해 알아보았다. 분사기는 연료 및 산화제 오리피스, 산화제 스커트로 구성되어있다. 분사기의 분무특성을 알아보기 위해 주위기체압력을 0에서 30kgg/cm2[g]까지 가압하여 분무 가시화, Sauter 평균 입경을 측정하였으며, 액적 크기는 이미지 처리 기법을 이용하였다. 실험결과로부터 로켓 산화제 과잉 예연소기용 분사기의 분무특성을 이해할 수 있었으며, 로켓 산화제 과잉 예연소기 개발에 중요한 자료로 활용될 수 있을 것이다.

고압 인젝터의 노즐 홀 수가 DME 연료분무의 미립화 특성에 미치는 영향 (Effect of Nozzle Hole Number on Atomization Characteristics of DME Fuel Spray using High Pressure Injector)

  • 이종태;이상훈;전문수
    • 한국분무공학회지
    • /
    • 제19권4호
    • /
    • pp.216-220
    • /
    • 2014
  • This paper presents effect of nozzle hole number on atomization characteristic of DME fuel spray using three different type of injector having the hole number of 6, 7 and 8. For this study, PDPA(phase Doppler particle analyzer) experiment was performed in terms of $T_{ASOE}$ under various injection pressure. To compare general trend of atomization characteristic, the law data were ensemble averaged based on $T_{eng}$ of 0.2 ms. Results showed that the droplet diameter in terms of SMD(Sauter Mean Diameter) was reduced as increase in injection pressure. Increasing the number of hole lead to reduce in droplet diameter, but no significant reduction in diameter was observed between hole number of 7 and that of 8. In addition, increasing the number of hole resulted in decrease in droplet velocity which is considered as the effect of reduction in spray momentum due to decreasing of fuel quantity per each hole.

다공 노즐에서 분사조건이 디젤 연료의 미립화 특성에 미치는 영향 (Effect of Injection Condition on the Diesel. Fuel Atomization in a Multi-Hole Nozzle)

  • 서현규;김지원;이창식
    • 한국분무공학회지
    • /
    • 제14권1호
    • /
    • pp.8-14
    • /
    • 2009
  • This paper present the diesel fuel spray evolution and atomization performance in a multi-hole nozzle in terms of injection rate, spray evolutions, and mean diameter and velocity of droplets in a compression ignition engine. In order to study the effect of split injection on the diesel fuel spray and atomization characteristic in a multi-hole nozzle, the test nozzle that has two-row small orifice with 0.2 mm interval was used. The time based fuel injection rate characteristics was analyzed from the pressure variation generated in a measuring tube. The spray characteristics of a multi-hole nozzle were visualized and measured by spray visualization system and phase Doppler particle analyzer (PDPA) system. It was revealed that the total injected fuel quantities of split injection are smaller than those of single injection condition. In case of injection rate characteristics, the split injection is a little lower than single injection and the peak value of second injection rate is lower than single injection. The spray velocity of split injection is also lower because of short energizing duration and small injection mass. It can not observe the improvement of droplet atomization due to the split injection, however, it enhances the droplet distributions at the early stage of fuel injection.

  • PDF

액체 온도 변화에 따른 평판 충돌 액적의 거동에 관한 연구 (Behavior of an Impinging Droplet on a Solid Surface with a Variation of Liquid Temperature)

  • 이동조;박병성;정진택;김호영
    • 대한기계학회논문집B
    • /
    • 제29권3호
    • /
    • pp.330-339
    • /
    • 2005
  • An experimental study on the behavior of droplets impinging on a solid flat surface was carried out in the present study. Breakup of a liquid droplet impinging on a solid surface has been investigated experimentally for various liquids with different properties. The liquid droplet temperature and incident angle were chosen as major parameters. Liquid droplet temperature and incident angle varied in the range from $-20{\circ}C\;to\;30{\circ}C\;and\;from\;30{\circ}\;to\;60{\circ},$ respectively. It was found that the variation of droplet temperature influences upon the mean diameter and uniformity of droplets which were bounced out from the solid surface. With increase of incident angle the dispersion mass fraction increases, causing the decrease of liquid film flow rate. As the liquid temperature increases, dispersion mass fraction increases since the surface tension decreases.

다단분사를 적용한 바이오디젤 연료의 분무 미립화 특성 (Spray-atomization Characteristics of Biodiesel Fuel with Multiple Injection)

  • 박수한;김형준;김세훈;이창식
    • 한국자동차공학회논문집
    • /
    • 제18권4호
    • /
    • pp.40-47
    • /
    • 2010
  • This study deals with the investigation about the effect of the pilot and split injection strategies on the spray-atomization characteristics of biodiesel fuel derived from a soybean oil. Experimental results were compared with the calculation results obtained from the numerical analysis. Fuel properties of biodiesel according to the variation of the fuel temperature were inserted to the fuel library in the KIVA code. The amount of fuel injection is divided into equal mass for each split and main injection. In this work, the pilot injection strategy can be achieved by the amount of fuel injection shortly before the start of the main injection. A spray tip penetration, radial distance and spray area were measured for the analysis of macroscopic spray characteristics. In addition, the local and overall droplet size distribution were calculated by using KIVA-3V code to study the effect of split and pilot injection on the atomization performance under high ambient pressure. From these studies, the experimental results showed the multiple injection induced the decrease of the spray tip penetration due to the reduction and division of the spray momentum compared to single injection. In the atomization performance, the droplet size increased in the case of the multiple injection a little. Moreover, the SMD slightly increased as the fuel droplets goes through the axial direction. The spray behavior of numerical results were well predicted the experimental multiple spray characteristics of biodiesel fuel.

공기보조형 가솔린 연료 분사기의 분무거동 및 미립화 특성 (Spray Behavior and Atomization Characteristics of Air-Assist Type Gasoline Fuel Injector)

  • 노병준;강신재;김원태
    • 한국자동차공학회논문집
    • /
    • 제6권3호
    • /
    • pp.187-197
    • /
    • 1998
  • To investigate the spray behavior and atomization characteristics using an air-assist injector, spray visualization and PDPA measurements were carried out under the various assisted air pressures and the fixed fuel pressure. The air assist pintle type injector employed in this study is consisted of the air assist adaptor and an injector housing using the gasoline fuel and air as the working fluids. As results, increasing pressure of assisted air, the growth of spray tip penetration is gradually reduced at the end of spray and spray angle is steadily increased at the main spray region except from the early spray. For the air assist pressure of 25㎪ in a spray downstream, it is doncluded that droplet size distribution shows the peak of 10${\mu}{\textrm}{m}$ and most of the droplet sizes are less than 50${\mu}{\textrm}{m}$. Also, the air-assist injector extremely improves fuel atomization in order to produce much finer droplets, it shows that approximately, in this case, 50% decreade of SMD than without air assit.

  • PDF

저압 TBI용 분사밸브의 분무특성에 관한 연구 (I) (Study on the Spray Characteristics in TBI Injector with Low Pressure)

  • 전흥신;임종한;이택희
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3179-3186
    • /
    • 1993
  • The study on the spray characteristics of TBI(Throttle Body Injection) injector has been carried out in this paper. The objective of this study is to improve the performance of TBI injector. The increase in the injection pressure and the utilization of assisted air are considered. The spray patten of TBI injector take the hollow-cone shape with $60^{\circ}~70^{\circ}$ spray angle regardless of injection pressure and injection pulse width. SAMD(Sauter Mean Diameter) of water in TBI injector are 510-$550{\mu}m$ and 310-$370{\mu}m$ respectively when injection pressures are $0.75 kgf/cm^{2}$ and $2.8 kgf/cm^{2}$. Then SMD of gasoline is estimated 380~$410{\mu}m$ and 230~$280{\mu}m$ respectively. The improvement of spray characteristics in TBI injector can be obtained with assisted air. If $W_{A}/W_{L}$ was over 0.2, SMD of water can be made under $50{\mu}m$.

고온에서 벽면 형상에 따른 GDI 분무의 충돌 과정 및 연료 액막 형성에 대한 수치적 연구 (Numerical Study on Impingement Process and Fuel Film Formation of GDI Spray according to Wall Geometry under High Ambient Temperature)

  • 심영삼;최경민;김덕줄
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.166-174
    • /
    • 2008
  • Numerical study on the impingement process and the fuel film formation of the hollow-cone fuel spray was conducted under vaporization condition, and the effect of the wall cavity angle on spray-wall impingement structure was investigated. A detailed understanding of this phenomena will help in designing injection systems and controlling the strategies to improve engine performance and exhaust emissions of the Gasoline Direct Injection (GDI) engine. The improved Abramzon model was used to model the spray vaporization process and the Gosman model was adopted for modeling of spray-wall impingement process. The calculated results of the spray-wall impingement process were compared with experimental results. The velocity field of the ambient gas, the Sauter Mean Diameter (SMD) and the generated fuel film on the wall, which are difficult to obtain by the experimental method, were also calculated and discussed. It was found that the radial distance after the wall impingement and the SMD decreased with increasing the cavity angle and the temperature.