• Title/Summary/Keyword: Saturation detection

Search Result 145, Processing Time 0.024 seconds

Development of System Configuration and Diagnostic Methods for Tongue Diagnosis Instrument (설진 기기의 시스템 구성 및 진단 방법 개발)

  • Kim, Keun-Ho;Do, Jun-Hyeong;Ryu, Hyun-Hee;Kim, Jong-Yeol
    • Korean Journal of Oriental Medicine
    • /
    • v.14 no.3
    • /
    • pp.89-95
    • /
    • 2008
  • A tongue shows physiological and clinicopathological changes of inner organs. Visual inspection of a tongue is not only convenient but also non-invasive. To develop an automat ic tongue diagnosis system for an objective and standardized diagnosis, the separation of the tongue are a from a facial image and the detection of coatings, spots and cracks are inevitable but difficult since the colors of a tongue, lips, and skin in a mouth as well as those of tongue furs and body are similar. The propose d method includes preprocessing with down-sampling and edge enhancement, over-segmentation, detecting positions with a local minimum over shading from the structure of a tongue, and correcting local minima or detecting edge with color difference. The proposed method produces the region of a segmented tongue, and then decomposes the color components of the region into hue, saturation and brightness, resulting in classifying the regions of tongue furs(coatings) into kinds of coatings and substance and segmenting them. Spots are detected by using local maxima and the variation of saturation, and cracks are searched by using local minima and the directivity of dark areas in brightness. The results illustrate the segmented region with effective information, excluding a non-tongue region and also give us accurate discrimination of coatings and the precise detection of spots and cracks. It can be used to make an objective and standardized diagnosis for an u-Healthcare system as well as a home care system.

  • PDF

Depiction of Acute Stroke Using 3-Tesla Clinical Amide Proton Transfer Imaging: Saturation Time Optimization Using an in vivo Rat Stroke Model, and a Preliminary Study in Human

  • Park, Ji Eun;Kim, Ho Sung;Jung, Seung Chai;Keupp, Jochen;Jeong, Ha-Kyu;Kim, Sang Joon
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.2
    • /
    • pp.65-70
    • /
    • 2017
  • Purpose: To optimize the saturation time and maximizing the pH-weighted difference between the normal and ischemic brain regions, on 3-tesla amide proton transfer (APT) imaging using an in vivo rat model. Materials and Methods: Three male Wistar rats underwent middle cerebral artery occlusion, and were examined in a 3-tesla magnetic resonance imaging (MRI) scanner. APT imaging acquisition was performed with 3-dimensional turbo spin-echo imaging, using a 32-channel head coil and 2-channel parallel radiofrequency transmission. An off-resonance radiofrequency pulse was applied with a Sinc-Gauss pulse at a $B_{1,rms}$ amplitude of $1.2{\mu}T$ using a 2-channel parallel transmission. Saturation times of 3, 4, or 5 s were tested. The APT effect was quantified using the magnetization-transfer-ratio asymmetry at 3.5 ppm with respect to the water resonance (APT-weighted signal), and compared with the normal and ischemic regions. The result was then applied to an acute stroke patient to evaluate feasibility. Results: Visual detection of ischemic regions was achieved with the 3-, 4-, and 5-s protocols. Among the different saturation times at $1.2{\mu}T$ power, 4 s showed the maximum difference between the ischemic and normal regions (-0.95%, P = 0.029). The APTw signal difference for 3 and 5 s was -0.9% and -0.7%, respectively. The 4-s saturation time protocol also successfully depicted the pH-weighted differences in an acute stroke patient. Conclusion: For 3-tesla turbo spin-echo APT imaging, the maximal pH-weighted difference achieved when using the $1.2{\mu}T$ power, was with the 4 s saturation time. This protocol will be helpful to depict pH-weighted difference in stroke patients in clinical settings.

Real time detection and recognition of traffic lights using component subtraction and detection masks (성분차 색분할과 검출마스크를 통한 실시간 교통신호등 검출과 인식)

  • Jeong Jun-Ik;Rho Do-Whan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.65-72
    • /
    • 2006
  • The traffic lights detection and recognition system is an essential module of the driver warning and assistance system. A method which is a color vision-based real time detection and recognition of traffic lights is presented in this paper This method has four main modules : traffic signals lights detection module, traffic lights boundary candidate determination module, boundary detection module and recognition module. In traffic signals lights detection module and boundary detection module, the color thresholding and the subtraction value of saturation and intensity in HSI color space and detection probability mask for lights detection are used to segment the image. In traffic lights boundary candidate determination module, the detection mask of traffic lights boundary is proposed. For the recognition module, the AND operator is applied to the results of two detection modules. The input data for this method is the color image sequence taken from a moving vehicle by a color video camera. The recorded image data was transformed by zooming function of the camera. And traffic lights detection and recognition experimental results was presented in this zoomed image sequence.

Sleep Apnea Detection using Estimated Stroke Volume (추정된 일회심박출량을 이용한 수면 무호흡 검출)

  • Lee, Junghun;Lee, Jeon;Lee, Hyo-Ki;Lee, Kyoung-Joung
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.97-103
    • /
    • 2013
  • This paper proposes a new algorithm for sleep apnea detection based on stroke volume. It is very important to detect sleep apnea since it is a common and serious sleep-disordered breathing (SDB). In the previous studies, methods for sleep apnea detection using heart rate variability, airflow and blood oxygen saturation, tracheal sound have been proposed, but a method using stroke volume has not been studied. The proposed algorithm consists of detection of characteristic points in continuous blood pressure signal, estimation of stroke volume and detection of sleep apnea. To evaluate the performance of algorithm, the MIT-BIH Polysomnographic Database provided by Phsio- Net was used. As a result, the sensitivity of 85.99%, the specificity of 72.69%, and the accuracy of 84.34%, on the average were obtained. The proposed method showed comparable or higher performance compared with previous methods.

An Efficient Color Edge Detection Using the Mahalanobis Distance

  • Khongkraphan, Kittiya
    • Journal of Information Processing Systems
    • /
    • v.10 no.4
    • /
    • pp.589-601
    • /
    • 2014
  • The performance of edge detection often relies on its ability to correctly determine the dissimilarities of connected pixels. For grayscale images, the dissimilarity of two pixels is estimated by a scalar difference of their intensities and for color images, this is done by using the vector difference (color distance) of the three-color components. The Euclidean distance in the RGB color space typically measures a color distance. However, the RGB space is not suitable for edge detection since its color components do not coincide with the information human perception uses to separate objects from backgrounds. In this paper, we propose a novel method for color edge detection by taking advantage of the HSV color space and the Mahalanobis distance. The HSV space models colors in a manner similar to human perception. The Mahalanobis distance independently considers the hue, saturation, and lightness and gives them different degrees of contribution for the measurement of color distances. Therefore, our method is robust against the change of lightness as compared to previous approaches. Furthermore, we will introduce a noise-resistant technique for determining image gradients. Various experiments on simulated and real-world images show that our approach outperforms several existing methods, especially when the images vary in lightness or are corrupted by noise.

Development of Eddy Current Testing System using Magnetic Saturation in ferromagnetic Materials (자기포화를 이용한 강자성체의 와전류검사장비 개발)

  • Sung, Je-Joong;Shin, Young-Hoon;Um, Tae-Gun;Kang, Seok-Chul;Kweon, Young-Ho;Suh, Dong-Man
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.4
    • /
    • pp.356-363
    • /
    • 2003
  • An eddy current testing system was developed for detection of flaws in the ferromagnetic steel tubes. Because the eddy current signals from the ferromagnetic steel tubes could be distorted easily due to an irregularity of magnetic permeability, magnetic saturation is required to suppress this variation of magnetic fields. A magnetic saturation probe with the Hemholtz coil was designed for the inspection of the steel tubes. The bandwidth pass filters were adapted to minimize the noise from the DC magnetization. When using the designed test probe, the flaw signals could be discriminated from the noise. The system was tested at the production line and showed a capability of detecting flaws, like a drilled hole of the diameter of 2.0mm at the moving speed of 1m/sec.

Research on Improving the Performance of YOLO-Based Object Detection Models for Smoke and Flames from Different Materials (다양한 재료에서 발생되는 연기 및 불꽃에 대한 YOLO 기반 객체 탐지 모델 성능 개선에 관한 연구 )

  • Heejun Kwon;Bohee Lee;Haiyoung Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.261-273
    • /
    • 2024
  • This paper is an experimental study on the improvement of smoke and flame detection from different materials with YOLO. For the study, images of fires occurring in various materials were collected through an open dataset, and experiments were conducted by changing the main factors affecting the performance of the fire object detection model, such as the bounding box, polygon, and data augmentation of the collected image open dataset during data preprocessing. To evaluate the model performance, we calculated the values of precision, recall, F1Score, mAP, and FPS for each condition, and compared the performance of each model based on these values. We also analyzed the changes in model performance due to the data preprocessing method to derive the conditions that have the greatest impact on improving the performance of the fire object detection model. The experimental results showed that for the fire object detection model using the YOLOv5s6.0 model, data augmentation that can change the color of the flame, such as saturation, brightness, and exposure, is most effective in improving the performance of the fire object detection model. The real-time fire object detection model developed in this study can be applied to equipment such as existing CCTV, and it is believed that it can contribute to minimizing fire damage by enabling early detection of fires occurring in various materials.

Fire Detection using Color and Motion Models

  • Lee, Dae-Hyun;Lee, Sang Hwa;Byun, Taeuk;Cho, Nam Ik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.237-245
    • /
    • 2017
  • This paper presents a fire detection algorithm using color and motion models from video sequences. The proposed method detects change in color and motion of overall regions for detecting fire, and thus, it can be implemented in both fixed and pan/tilt/zoom (PTZ) cameras. The proposed algorithm consists of three parts. The first part exploits color models of flames and smoke. The candidate regions in the video frames are extracted with the hue-saturation-value (HSV) color model. The second part models the motion information of flames and smoke. Optical flow in the fire candidate region is estimated, and the spatial-temporal distribution of optical flow vectors is analyzed. The final part accumulates the probability of fire in successive video frames, which reduces false-positive errors when fire-like color objects appear. Experimental results from 100 fire videos are shown, where various types of smoke and flames appear in indoor and outdoor environments. According to the experiments and the comparison, the proposed fire detection algorithm works well in various situations, and outperforms the conventional algorithms.

Improvement of Accuracy in Evaluating Hue Change Time in the Hue Detection Based Transient Liquid Crystals Technique (색상 검출방식의 천이 액정법에서 색상 변화 시간 산정의 정확도 향상)

  • Shin, So-Min;Jeon, Chang-Soo;Jung, Yong-Wun;Kwak, Jae-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.918-925
    • /
    • 2007
  • In this paper, different criteria fur determining hue change time in the hue detection based transient liquid crystals technique were compared. Results showed that methods utilizing threshold of intensity or saturation gave many missing points and quality of the calculated results were strongly depends on the value of threshold. Wider bandwidth in the hue bandwidth method showed better distribution of calculated hue change time, but induced ambiguity in the hue change time. In the time-hue curve fitting method, the distribution of evaluated hue change time was smooth and reasonable, and, by the nature of curve fitting, the noise effect on the hue was successfully considered in calculating of the hue change time. Compared to other methods, it is expected that the time-hue curve fitting method would provide better and accurate hue change time in the hue detection based transient liquid crystals technique.

Robust Design of Pulse Oximeter Using Dynamic Control and Motion Artifact Detection Algorithms

  • Cho, Jung Hyun;Kim, Jong Cheol;Yoon, Gil Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1780-1787
    • /
    • 2014
  • Arterial oxygen saturation ($SpO_2$) monitoring for newborns requires special attention in neonatal intensive care units (NICUs). Newborns have very low photo-plethysmogram (PPG) amplitudes and their body movements are difficult to contain. Hardware design and its associated signal processing algorithms should be robust enough so that faulty measurements can be avoided. In this study, improved designs were implemented to deal with low perfusion, motion artifact, and the influence of ambient light. Dynamic range was increased by using different LED intensities and a feedback system. To minimize the effects of motion artifact and to discard other unqualified data, four additional algorithms were used, which were based on dual-trace detection, continuity of DC level, morphology of PPG, and simultaneity check of $SpO_2$. Our $SpO_2$ system was tested with newborns with normal respiration in the NICU. Our system provided fast, real-time responses and 100% artifact detection was accomplished under 84% of $SpO_2$.