• 제목/요약/키워드: Saturation Vapor Pressure

검색결과 63건 처리시간 0.023초

Theoretical Analysis of Heat Transport Limitation in a Screen Mesh Wick Heat Pipe

  • Lee, Ki-Woo;Park, Ki-Ho;Lee, Wook-Hyun;Rhi, Seok-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제12권1호
    • /
    • pp.1-9
    • /
    • 2004
  • The purpose of the present study is to examine the heat transport limitations in a screen mesh heat pipe for electronic cooling by theoretical analysis. Diameter of pipe was 6mm, and mesh numbers were 50, 100, 150, 200 and 250, and water was investigated as working fluid. According to the change of mesh number, wick layer, inclination and saturation temperature, the maximum heat transport limitations by capillary, entraintment, sonic and boiling were analyzed by a theoretical design method of heat pipe, including capillary pressure, pumping pressure, liquid friction coefficient in wick, vapor friction coefficient, etc. Based on the results, the capillary limitation in a small diameter of heat pipe is largely affected by mesh number and wick layer. Mesh number of 250 is desirable not to be used in pipe diameter of 6 mm, because capillary heat transport limitation decreases by the abrupt increase of liquid friction pressure due to the small liquid flow area. For the heat transport of 15 watt in 6mm diameter pipe, mesh number of 100 and one layer is an optimum wick condition, which thermal resistance is the smallest.

Effect of membrane deformation on performance of vacuum assisted air gap membrane distillation (V-AGMD)

  • Kim, Yusik;Choi, Jihyeok;Choi, Yongjun;Lee, Sangho
    • Membrane and Water Treatment
    • /
    • 제13권1호
    • /
    • pp.51-62
    • /
    • 2022
  • Vacuum-assisted air gap membrane distillation (V-AGMD) has the potential to achieve higher flux and productivity than conventional air gap membrane distillation (AGMD). Nevertheless, there is not much information on technical aspects of V-AGMD operation. Accordingly, this study aims to analyze the effect of membrane deformation on flux in V-AGMD operation. Experiments were carried out using a bench-scale V-AGMD system. Statistical models were applied to understand the flux behaviors. Statistical models based on MLR, GNN, and MLFNN techniques were developed to describe the experimental data. Results showed that the flux increased by up to 4 times with the application of vacuum in V-AGMD compared with conventional AGMD. The flux in both AGMD and V-AGMD is affected by the difference between the air gap pressure and the saturation pressure of water vapor, but their dependences were different. In V-AGMD, the membranes were found to be deformed due to the vacuum pressure because they were not fully supported by the spacer. As a result, the deformation reduced the effective air gap width. Nevertheless, the rejection and LEP were not changed even if the deformation occurred. The flux behaviors in V-AGMD were successfully interpreted by the GNN and MLFNN models. According to the model calculations, the relative impact of the membrane deformation ranges from 10.3% to 16.1%.

온도, 가스량 및 도핑시간변화에 따른 $POCI_3$ 도핑 공정의 최적화 (Optimization of the $POCI_3$ doping process according to the variation of deposition temperature, gas flow rate and doping time)

  • 정경화;강정진
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제7권3호
    • /
    • pp.206-212
    • /
    • 1994
  • In this paper, We discuss the $POCI_3$ doping process according to the variation of deposition temperature, gas flow rate and doping time. The factors acted with $POCI_3$ doping are gas flow rate deposition temperature and time etc. Among them the temperature is the most important factor. For the $POCI_3$ flow rate, it should not exceed the resistivity saturation point developed on poly surface by annealing treatment. Therefore, this study suggests the optimum conditions of Poly-silicon treatments with the $POCI_3$ flow rate.

  • PDF

Study on dryout heat flux of axial stratified debris bed under top-flooding

  • Wenbin Zou;Lili Tong;Xuewu Cao
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.636-643
    • /
    • 2024
  • The coolability of the debris bed with a simulant of solidified corium is experimentally studied, focusing on the effects of the structure of the axial stratified debris bed on the dryout heat flux (DHF). DHF was obtained for the four structures with different particle sizes for the axial stratified debris bed under top flooding. The experimental results show that the dryout position of the axial stratified debris bed is formed at the stratified interface indicated by the temperature rise, and the DHF of the axial stratified bed is much lower than that of the homogeneous bed packed with the upper small particles. To predict the dryout heat flux of the stratified debris beds, by considering the properties of the mixed area, a one-dimensional dryout heat flux model of the porous medium is derived from a water and vapor momentum equation for porous medium, two-phase permeability modifications, interfacial drag, and the correlation between capillary pressure and liquid saturation and verified with the experimental data. The modified model can give reasonable results under different structures.

Superhydrophobic nanostructured non-woven fabric using plasma modification

  • Shin, Bong-Su;Lee, Kwang-Reoul;Kim, Ho-Young;Moon, Myoung-Woon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.320-320
    • /
    • 2011
  • We describe fabrication of superhydrophobic surface on non-woven fabric (NWF) having nano-hairy structures and a hydrophobic surface coating. Oxygen plasma was irradiated on NWF for nano-texuring and a precursor of HMDSO (Hexamethydisiloxane) was introduced as a surface chemical modification for obtaining superhydrophobicity using 13.56 MHz radio frequency-Plasma Enhanced Chemical Vapor Deposition (rf-PECVD). O2 plasma treatment time was varied from 1 min to 60 min at a bias voltage of 400V, which fabricated pillar-like structures with diameter of 30 nm and height of 150 nm on NWF. Subsequently, hydrophobic coating using hexamethyldisiloxane vapor was deposited with 10 nm thickness on NWF substrate at a bias voltage of 400 V. We evaluate superhydrophobicity of the modified NWF with sessile drop using goniometer and high speed camera, in which aspect ratio of nanohairy structures, contact angle and contact angle hysteresis of the surfaces were measured. With the increase of aspect ratio, the wetting angle increased from $103^{\circ}$ to $163^{\circ}$, and the contact angle hysteresis decreased dramatically below $5^{\circ}$. In addition, we had conducted experiment for nucleation and condensation of water via E-SEM. During increasing vapor pressure inside E-SEM from 3.7 Torr to over 6 Torr which is beyond saturation point at $2^{\circ}C$, we observed condensation of water droplet on the superhydropobic NWF. While the condensation of water on oxygen plasma treated NWF (superhydrophilic) occurred easily and rapidly, superhydrophobic NWF which was fabricated by oxygen and HMDSO was hardly wet even under supersaturation condition. From the result of wetting experiment and water condensation via E-SEM, it is confirmed that superhydrophobic NWF shows the grate water repellent abilities.

  • PDF

오블롱 셀 플레이트 열교환기에서의 R-l34a, R-407C, R-410A의 응축성능에 관한 실험적 연구 (Study on R-l34a, R-407C, and R-410A Condensation Performance in the Oblong Shell and Plate Heat Exchanger)

  • 박재홍;김영수
    • 대한기계학회논문집B
    • /
    • 제28권12호
    • /
    • pp.1535-1548
    • /
    • 2004
  • Condensation heat transfer experiments were conducted with the oblong shell and plate heat exchanger without oil in a refrigerant loop using R-l34a, R-407C and R-410A. An experimental refrigerant loop has been developed to measure the condensation heat transfer coefficient h$_{r}$ and frictional pressure drop $\Delta$p$_{f}$ of the various refrigerants in a vertical oblong shell and plate heat exchanger. The effects of the refrigerant mass flux(40∼80kg/$m^2$s), average heat flux(4∼8kW/$m^2$), refrigerant saturation temperature(30∼4$0^{\circ}C$) and vapor quality of refrigerants on the measured data were explored in detail. Similar to the case of a plate heat exchanger, even at a very low Reynolds number, the flow in the oblong shell and plate heat exchanger remains turbulent. A comparison of the performance of the various refrigerants revealed that R-410A had the highest heat transfer performance followed by R-l34a, and R-407C had the lowest performance of the refrigerants tested. The pressure drops were also reported in this paper. The pressure drops for R-410A were approximately 45% lower than those of R-l34a. R-407C had 30% lower pressure drops than R-l34a. Experimental results were compared with several correlations which predicted condensation heat transfer coefficients and frictional pressure drops. Comparison with the experimental data showed that the previously proposed correlations gave unsatisfactory results. Based on the present data, empirical correlations of the condensation heat transfer coefficient and the friction factor were proposed.tor were proposed.sed.

KORA 프로그램을 활용한 암모니아 누출사고 영향범위 결정 기여요인 연구 (A Study on the Factors Affecting the Influence Ranges of Ammonia Leakage by Using KORA Program)

  • 임형준;곽솔림;정진희;류태권;최우수;이지은;이진선;이연희;김정곤;윤준헌;류지성
    • 한국가스학회지
    • /
    • 제22권3호
    • /
    • pp.38-44
    • /
    • 2018
  • 암모니아는 발전소의 탈질설비, 냉동장치의 냉매로 많이 사용되고 있으며, 증기압이 높고 공기보다 가벼운 물질로써 장외영향평가시 영향범위가 넓은 물질이다. KORA(Korea Off-site Risk Assessment supporting tool)를 활용하여 4가지 환경인자인 지면굴곡도, 밀폐여부, 운전온도 압력, 누출공 크기를 달리하여 영향범위를 산출하였다. 그 결과 굴곡도에 따른 영향범위는 약 4.62배 차이가 났으며 암모니아 저장탱크는 밀폐된 경우가 약 0.64의 저감율을 나타냈다. 저장온도와 압력에 따라 누출률이 증가되어 영향범위도 증가하는 형태를 보였으며 포화증기압 이상으로 저장시 영향범위는 $45^{\circ}C$에서 0.1 Mpa 당 평균 3.45%의 증가율을 나타냈다. 누출공 크기에 따른 영향범위 산정 결과는 누출구의 면적에 비례하는 것으로 나타났다.

고준위폐기물처분장 공학적방벽의 열-수리-역학적 거동 연구: 엔지니어링 규모의 실증실험 (Thermal-Hydro-Mechanical Behaviors in the Engineered Barrier of a HLW Repository: Engineering-scale Validation Test)

  • 이재완;조원진
    • 터널과지하공간
    • /
    • 제17권6호
    • /
    • pp.464-474
    • /
    • 2007
  • 고준위폐기물처분장의 성능 및 안전성 향상을 위해서 공학적방벽(engineered barrier)에 대한 실증이 필요하다. 우리나라 기준처분시스템에 대한 엔지니어링 규모의 실험장치(KENTEX)를 제작 설치하고, 공학적방벽에서의 열-수리-역학적 거동 규명을 위한 실증실험을 수행하였다. KENTEX 실험은 2005년 5월 31일에 시작되어 현재 성공적으로 진행 중에 있으며, 지금까지 얻어진 실험결과로부터 공학적방벽에서의 열-수리-역학적 거동에 대한 중간결론을 얻을 수 있었다. 벤토나이트 블록 내 온도는 실험 시작 후 수 주 만에 정상상태에 도달하였고, 온도분포는 히터에 가까울수록 높고 멀어질수록 낮은 값을 보였다. 수분함량은 히터 쪽보다는 지하수가 유입되는 실린더 벽면 부근에서 높은 값을 가졌고, 건조-습윤 과정에 의한 벤토나이트 블록의 수화는 측정위치에 따라 달랐다. 실험기간 동안 벤토나이트 블록에 작용하는 압력은 블록의 포화도 (그 결과, 팽윤압)이 증가할수록 증가하였다. 히터 부근에서는 벤토나이트의 열응력이나 블록 공극 내 증기압도 중요한 역할을 하였다.

내경 4.3 mm와 6.4 mm관내 R-22와 R-407C의 증발 열전달과 압력강하에 관한 실험연구 (Experimental Study for Evaporation Heat Transfer and Pressure Drop of R-22 and R-407C in an Inner Diameter of 4.3 mm and 6.4 mm)

  • 손창효;노건상
    • 한국가스학회지
    • /
    • 제12권3호
    • /
    • pp.43-49
    • /
    • 2008
  • 본 연구에서는 내경 4.3 mm와 6.4 mm의 수평동관내 R-22와 R-407C의 증발 열전달과 압력강하를 실험적으로 조사하였다. 냉매 순환루프의 주요구성품은 수액기, 압축기, 질량유량계, 응축기, 이중관식 증발기 (시험부)로 구성된다. 시험부는 내경 4.3 mm와 6.4mm의 평활 동관으로 이루어져 있다. 냉매질량유속은 $100\;kg/m^2s$에서 $300\;kg/m^2s$까지 변화시켰고, 증발기 냉매포화온도는 $5^{\circ}C$이다. R-22와 R-407C의 증발 열전달계수는 질량유속과 증기건도의 증가와 함께 따라 상승한다. 내경 4.3 mm와 6.4mm관내 R-22의 증발 열전달계수가 R-407C에 비해 각각 $7.3{\sim}47.1%$$5.68{\sim}46.6%$ 정도 높다.

  • PDF

Characteristics of Si Nano-Crystal Memory

  • Kwangseok Han;Kim, Ilgweon;Hyungcheol Shin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제1권1호
    • /
    • pp.40-49
    • /
    • 2001
  • We have developed a repeatable process of forming uniform, small-size and high-density self-assembled Si nano-crystals. The Si nano-crystals were fabricated in a conventional LPCVD (low pressure chemical vapor deposition) reactor at $620^{\circ}c$ for 15 sec. The nano-crystals were spherical shaped with about 4.5 nm in diameter and density of $5{\times}l0^{11}/$\textrm{cm}^2$. More uniform dots were fabricated on nitride film than on oxide film. To take advantage of the above-mentioned characteristics of nitride film while keeping the high interface quality between the tunneling dielectrics and the Si substrate, nitride-oxide tunneling dielectrics is proposed in n-channel device. For the first time, the single electron effect at room temperature, which shows a saturation of threshold voltage in a range of gate voltages with a periodicity of ${\Delta}V_{GS}\;{\approx}\;1.7{\;}V$, corresponding to single and multiple electron storage is reported. The feasibility of p-channel nano-crystal memory with thin oxide in direct tunneling regime is demonstrated. The programming mechanisms of p-channel nano-crystal memory were investigated by charge separation technique. For small gate programming voltage, hole tunneling component from inversion layer is dominant. However, valence band electron tunneling component from the valence band in the nano-crystal becomes dominant for large gate voltage. Finally, the comparison of retention between programmed holes and electrons shows that holes have longer retention time.

  • PDF