• 제목/요약/키워드: Saturation Flux Density

Search Result 57, Processing Time 0.021 seconds

Artificial Neural Network Supported Prediction of Magnetic Properties of Bulk Metallic Glasses (인공신경망을 이용한 벌크 비정질 합금 소재의 포화자속밀도 예측 성능평가)

  • Chunghee Nam
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.273-278
    • /
    • 2023
  • In this study, based on the saturation magnetic flux density experimental values (Bs) of 622 Fe-based bulk metallic glasses (BMGs), regression models were applied to predict Bs using artificial neural networks (ANN), and prediction performance was evaluated. Model performance evaluation was investigated by using the F1 score together with the coefficient of determination (R2 score), which is mainly used in regression models. The coefficient of determination can be used as a performance indicator, since it shows the predicted results of the saturation magnetic flux density of full material datasets in a balanced way. However, the BMG alloy contains iron and requires a high saturation magnetic flux density to have excellent applicability as a soft magnetic material, and in this study F1 score was used as a performance indicator to better predict Bs above the threshold value of Bs (1.4 T). After obtaining two ANN models optimized for the R2 and F1 score conditions, respectively, their prediction performance was compared for the test data. As a case study to evaluate the prediction performance, new Fe-based BMG datasets that were not included in the training and test datasets were predicted using the two ANN models. The results showed that the model with an excellent F1 score achieved a more accurate prediction for a material with a high saturation magnetic flux density.

Analytical Calculation for Predicting the Air Gap Flux Density in Surface-Mounted Permanent Magnet Synchronous Machine

  • Feng, Yan-li;Zhang, Cheng-ning
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.769-777
    • /
    • 2017
  • The research of air gap flux density has a significant effect on predicting and optimizing the structure parameters of electrical machines. In the paper, the air gap coefficient, leakage flux factor and saturation coefficient are first analytically expressed in terms of motor properties and structure parameters. Subsequently, the analytical model of average air gap flux density for surface-mounted permanent magnet synchronous machines is proposed with considering slotting effect and saturation. In order to verify the accuracy of the proposed analytical model, the experiment and finite element analysis (FEA) are used. It shows that the analytical results keep consistency well with the experimental result and FEA results, and the errors between FEA results and analytical results are less than 5% for SPM with high power. Finally, the analytical model is applied to optimizing the motor structure parameters. The optimal results indicate that the analytical calculation model provides a great potential to the machine design and optimization.

The Effect of the Processing Conditions on the Magnetics Properties of Mn-Zn ferrite (제조공정에 따른 Mn-Zn 페라이트의 전자기적 특성변화)

  • 김종령;이해연;김현식;오영우;민복기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.905-908
    • /
    • 2001
  • The microstructure and the magnetic properties of Mn-Zn ferrite, which were power loss and saturation magnetic flux density, were investigated as the function of the process before firing. The highest initial permeability and the lowest power loss were attained to the specimen with CaO 400 ppm as a resulted from the highest solubility to SiO$_2$and the creation of liquid phase which improved sintering. The biggest grain size, the highest saturation magnetic flux density and the lowest power loss, which was resulted from that the eddy current loss increased as grain size increased but the hysteresis loss much more decreased and the hysteresis loss strongly influenced on the total power loss rather than the eddy current loss, were obtained to the Mn-Zn ferrite added 2wt% PVA. The power loss was lowest and the saturation magnetic flux density was highest in case of 1 ton/$\textrm{cm}^2$ and the grain size was not influenced.

  • PDF

Interlaminar Flux Density Distribution at Joints of Overlapping Stacked Electrical Steel and Amorphous Ribbons

  • Erdem, Sezer;Derebasi, Naim
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.190-193
    • /
    • 2010
  • The design of joints in a transformer core significantly affects the transformer's efficiency. Air gaps cause variations in the flux distribution at the joints of the laminations, which depend on the geometry. Two similar samples consisting of electrical steel strips and amorphous ribbons were made. The spatial flux distributions were determined using an array of search coils for each sample. 2D models of these samples were created and examined by finite element analysis. The magnetic flux distribution for each lamination in the samples was computed. The results show that the flux density in amorphous ribbons above and below the air gap starts to approach saturation at lower flux density levels than for electrical steel. The flux density measured using the search coil under the air gap is increased in amorphous ribbons and decreased in the electrical steel with increasing frequency.

THE ELECTROMAGNETIC PROPERTIES OF Mg-Mn FERRITES

  • Lee, D.Y.;Cho, S.I.;Shon, H.J.;Hur, W.D.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.552-555
    • /
    • 1995
  • The magnetic properties of Mg-Mn ferrites were investigated in the composition range of $Mg_{a}Mn_{b}Fe_{c}O_{4\pm\delta}$ (a+b+c=3) with the addition of $Al_{2}O_{3}$. In $MgO-MnO-Fe_{2}O_{3}$ ternary system, the spinel single phase existed within the composition range of MgO-50 mol%, MnO-70 mol% and $Fe_{2}O_{3}-60\;mol%$. The saturation magnetic flux density increased with the increase of $Fe_{2}O_{3}$ content and showed the maximum at the stoichiometric composition of $(Mg,Mn)Fe_{2}O_{4}$. In $Mg_{x}Mn_{1-x}Fe_{2}O_{4}(x=0.2~0.8)$ system, the saturation magnetic flux density showed the maximum at $Mg_{0.2}Mn_{0.8}Fe_{2}O_{4}$. The addition of $Al_{2}O_{3}$ resulted in the decrease of saturation magnetic flux density but increased the electrical resistivity.

  • PDF

Proposal of Potted Inductor with Enhanced Thermal Transfer for High Power Boost Converter in HEVs

  • You, Bong-Gi;Ko, Jeong-Min;Kim, Jun-Hyung;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1075-1080
    • /
    • 2015
  • A hybrid electric vehicle (HEV) powertrain has more than one energy source including a high-voltage electric battery. However, for a high voltage electric battery, the average current is relatively low for a given power level. Introduced to increase the voltage of a HEV battery, a compact, high-efficiency boost converter, sometimes called a step-up converter, is a dc-dc converter with an output voltage greater than its input voltage. The inductor occupies more than 30% of the total converter volume making it difficult to get high power density. The inductor should have the characteristics of good thermal stability, low weight, low losses and low EMI. In this paper, Mega Flux® was selected as the core material among potential core candidates. Different structured inductors with Mega Flux® were fabricated to compare the performance between the conventional air cooled and proposed potting structure. The proposed inductor has reduced the weight by 75% from 8.8kg to 2.18kg and the power density was increased from 15.6W/cc to 56.4W/cc compared with conventional inductor. To optimize the performance of proposed inductor, the potting materials with various thermal conductivities were investigated. Silicone with alumina was chosen as potting materials due to the high thermo-stable properties. The proposed inductors used potting material with thermal conductivities of 0.7W/m·K, 1.0W/m·K and 1.6W/m·K to analyze the thermal performance. Simulations of the proposed inductor were fulfilled in terms of magnetic flux saturation, leakage flux and temperature rise. The temperature rise and power efficiency were measured with the 40kW boost converter. Experimental results show that the proposed inductor reached the temperature saturation of 107℃ in 20 minutes. On the other hand, the temperature of conventional inductor rose by 138℃ without saturation. And the effect of thermal conductivity was verified as the highest thermal conductivity of potting materials leads to the lowest temperature saturations.

An Investigation of Induction Motor Saturation under Voltage Fluctuation Conditions

  • Ghaseminezhad, Morteza;Doroudi, Aref;Hosseinian, Seyed Hossein;Jalilian, Alireza
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.306-314
    • /
    • 2017
  • Nowadays power quality effects on induction motors have gained significant attention due to wide application of these motors in industry. The impact of grid voltage fluctuations on the induction motor behavior is one of the important issues to be studied by power engineers. The degree of iron saturation is a paramount factor affecting induction motors performance. This paper investigates the effects of voltage fluctuations on motor magnetic saturation based on the harmonic content of airgap flux density by finite element method (FEM). It is clarified that the saturation harmonics under normal range of voltage fluctuations have not changed significantly with respect to pure sinusoidal conditions. Experimental results on a 1.1 kW, 380 V, 50 Hz, 2 pole induction motor are employed to validate the accuracy of the simulation results.

An Asymmetric Rotor Design of Interior Permanent Magnet Synchronous Motor for Improving Torque Performance

  • Yoon, Myung-Hwan;Kim, Doo-Young;Kim, Sung-Il;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.387-393
    • /
    • 2015
  • Torque ripple is necessarily generated in interior permanent magnet synchronous motors (IPMSMs) due to the non-sinusoidal distribution of flux density in the air gap and the magnetic reluctance by stator slots. This paper deals with an asymmetric rotor shape to reduce torque ripple which can make sinusoidal flux density distribution in the air gap. Meanwhile the average torque is relatively increased by the asymmetric rotor. Response surface method (RSM) is applied to find the optimum position of the permanent magnets for the IMPSM with improved torque performance. Consequently, an asymmetric structure is the result of RSM and the structure has disadvantage of a mechanical stiffness. Finally, the performance of suggested shape is verified by finite element analysis and structural analysis is conducted for the mechanical stiffness.

Design of Surface-Mounted Permanent Magnet Synchronous Motor Considering Axial Leakage Flux by using 2-Dimensional Finite Element Analysis

  • Lee, Byeong-Hwa;Park, Hyung-Il;Jung, Jae-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2284-2291
    • /
    • 2018
  • This paper deals with optimum design of surface mounted permanent magnet synchronous motor (SPMSM) for automotive component. For a compact system structure, it was designed as a motor with a 14-pole 12-slot concentrated winding and hollow shaft. The motor is a thin type structure which stator outer diameter is relatively large compared to its axial length and is designed to have a high magnetic saturation for increasing the torque density. Since the high magnetic saturation in the stator core increases the axial leakage flux, a 3-dimensional (3-D) finite element analysis (FEA) is indispensable for torque analysis. However, optimum designs using 3-D FEA is inefficient in terms of time and cost. Therefore, equivalent 2-D FEA which is able to consider axial leakage flux is applied to the optimization to overcome the disadvantages of 3-D FEA. The structure for cost reduction is proposed and optimum design using equivalent 2-D FEA has been performed.

Characteristic Analysis and Experimental Verification of the Axially Asymmetric Structured Outer-Rotor Type Permanent Magnet Motor

  • Seo, Myung-Ki;Lee, Tae-Yong;Park, Kyungsoo;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.898-904
    • /
    • 2016
  • In this study, we have dealt with a design characteristic of outer-rotor type permanent magnet (PM) motor applied for Engine Cooling Fan (ECF). When we design a motor with structure like this type, it is required as a requisite to consider 3-Dimensional (3-D) effect by implementing a non-linear Finite Element Analysis (FEA) due to a yoke-ceiling, which is perpendicular to the axis of rotation. We have analyzed identical models under three different conditions. The analysis has been performed through a non-linear 2-Dimensional (2-D) and 3-D FEA. Finally, the results have been compared with Back Electro-Motive Force (BEMF) value of actual motor model. As a result, a yoke-ceiling function as an additional flux path and the operating point on B-H curve of rotor material is shifted to non-saturation region relatively. Accordingly, magnetic flux linkage can be increased and motor size can be decreased under same input condition to satisfy ECF specification, such as torque.