• Title/Summary/Keyword: Satellite validation

Search Result 314, Processing Time 0.026 seconds

THE SIMPLE METHOD OF GEOMETRIC RECONSTRUCTION FOR SPOT IMAGES

  • JUNG HYUNG-SUP;KIM SANG-WAN;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.205-207
    • /
    • 2004
  • The simple method of the geometric reconstruction of satellite linear pushbroom images is investigated. The model of the sensor used is based on the SPOT model that is developed by Kraiky. The satellite trajectory is a Keplerian trajectory in the approximation. Four orbital parameters, longitude of the ascending $node(\omega),$ inclination of the orbit plan(I), latitude argument of the satellite(W) and distance between earth center and satellite, are used for the camera modeling. We suppose that four orbital parameters and satellite attitude angles are exactly acquired. Then, in order to refine model, the given attitude angles and orbital parameters is not changed, but time-independent four parameters associated with LOS(Line Of Sight) vector is updated. A pair of SPOT-5 images has been used for validation of proposed method. Two GCPs acquired by GPS survey is used to controlling the LOS vector. The results are that the RMSE of 16 checking points are about 4.5m. Because the ground resolution of SPOT-5 is 2.5m, the result obtained in this study has a good accuracy. It demonstrates that the sensor model developed by this study can be used to reconstruct the geometry of satellite image taken by pushbroom camera.

  • PDF

The effect of noise and doppler for range measurement of low orbit satellite using tone method (톤 방식을 사용한 저궤도 위성 거리 측정에서의 잡음과 도플러 영향 분석)

  • 김영완;박동철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5A
    • /
    • pp.641-650
    • /
    • 2000
  • The effects of noise and doppler for low orbit satellite range measurement using tone method are represented in this paper. Also the optimal noise bandwidth of range signal detection circuit which is used for range measurement system of KOMPSAT is proposed. Based on the effects of satellite orbit parameters via the deduction of dynamic motion characteristics of low orbit satellite and signal to noise spectral density of range measurement signal, the effects of noise and doppler for range measurement system are analyzed. The effect of satellite link noise is decreased, but the effect for doppler is increased as the PLL noise bandwidth of range signal detection circuit is increased. The validation of analyzed effect is verified via comparison of measurement results of KOMPSAT's range measurement system and simulation results in environments of low orbit satellite.

  • PDF

Particulate Distribution Map of Tidal Flat using Unsupervised Classification of Multi-Temporary Satellite Data (다중시기 위성영상의 무감독분류에 의한 갯벌의 입자 분포도)

  • 정종철
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.2
    • /
    • pp.71-79
    • /
    • 2002
  • This research presents particulate distribution map of tidal flats of Hampyung bay using reflectance which extracted from satellite data and field survey data during same periods. The spectrum of particulate composition obtained from Landsat TM data was analysed and 7 scenes of satellite image were classified with ISODATA and K-MEANS methods. The results of unsupervised classification were estimated with in-situ data. The classification accuracy of ISODATA and K-MAMS methods were 84.3% and 85.7%. For validation of classified results of multi-temporal satellite images, TM image of May 1999(reference data), which was classified with field survey data was compared with classified results of multi-temporary satellite data.

Assessment and Validation of New Global Grid-based CHIRPS Satellite Rainfall Products Over Korea (전지구 격자형 CHIRPS 위성 강우자료의 한반도 적용성 분석)

  • Jeon, Min-Gi;Nam, Won-Ho;Mun, Young-Sik;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.39-52
    • /
    • 2020
  • A high quality, long-term, high-resolution precipitation dataset is an essential in climate analyses and global water cycles. Rainfall data from station observations are inadequate over many parts of the world, especially North Korea, due to non-existent observation networks, or limited reporting of gauge observations. As a result, satellite-based rainfall estimates have been used as an alternative as a supplement to station observations. The Climate Hazards Group Infrared Precipitation (CHIRP) and CHIRP combined with station observations (CHIRPS) are recently produced satellite-based rainfall products with relatively high spatial and temporal resolutions and global coverage. CHIRPS is a global precipitation product and is made available at daily to seasonal time scales with a spatial resolution of 0.05° and a 1981 to near real-time period of record. In this study, we analyze the applicability of CHIRPS data on the Korean Peninsula by supplementing the lack of precipitation data of North Korea. We compared the daily precipitation estimates from CHIRPS with 81 rain gauges across Korea using several statistical metrics in the long-term period of 1981-2017. To summarize the results, the CHIRPS product for the Korean Peninsula was shown an acceptable performance when it is used for hydrological applications based on monthly rainfall amounts. Overall, this study concludes that CHIRPS can be a valuable complement to gauge precipitation data for estimating precipitation and climate, hydrological application, for example, drought monitoring in this region.

Validation of COMS Ka band Antenna Beam Coverage (천리안위성 Ka대역 안테나 빔 커버리지 검증)

  • Jo, Jin-Ho;You, Moon-Hee;Lee, Seong-Pal;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.86-91
    • /
    • 2012
  • This paper described validation results of COMS Ka band antennas beam coverages which were developed by ETRI. After satellite launch, In Orbit Test(IOT) activities are stat to check spacecraft and payloads are still in healthy condition after launch. During IOT phase, ETRI measured radiation patterns of COMS Ka band antennas and compare with ground test(CATR) results. The antenna patterns similarity between IOT results and CATR results show that COMS Ka band antenna withstand launch vibration and in the good healthy condition. After IOT, ETRI performed field test for beam coverage measurements with vehicle to check if Ka band beam coverage are formed well as designed. For the beam coverage measurement, 17 points were selected over the Korean peninsula. The field measurement data were very similar with CATR data and this confirms that beam coverage are formed well over the Korean peninsula as expected.

Performance Analysis of Cloud-Net with Cross-sensor Training Dataset for Satellite Image-based Cloud Detection

  • Kim, Mi-Jeong;Ko, Yun-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.103-110
    • /
    • 2022
  • Since satellite images generally include clouds in the atmosphere, it is essential to detect or mask clouds before satellite image processing. Clouds were detected using physical characteristics of clouds in previous research. Cloud detection methods using deep learning techniques such as CNN or the modified U-Net in image segmentation field have been studied recently. Since image segmentation is the process of assigning a label to every pixel in an image, precise pixel-based dataset is required for cloud detection. Obtaining accurate training datasets is more important than a network configuration in image segmentation for cloud detection. Existing deep learning techniques used different training datasets. And test datasets were extracted from intra-dataset which were acquired by same sensor and procedure as training dataset. Different datasets make it difficult to determine which network shows a better overall performance. To verify the effectiveness of the cloud detection network such as Cloud-Net, two types of networks were trained using the cloud dataset from KOMPSAT-3 images provided by the AIHUB site and the L8-Cloud dataset from Landsat8 images which was publicly opened by a Cloud-Net author. Test data from intra-dataset of KOMPSAT-3 cloud dataset were used for validating the network. The simulation results show that the network trained with KOMPSAT-3 cloud dataset shows good performance on the network trained with L8-Cloud dataset. Because Landsat8 and KOMPSAT-3 satellite images have different GSDs, making it difficult to achieve good results from cross-sensor validation. The network could be superior for intra-dataset, but it could be inferior for cross-sensor data. It is necessary to study techniques that show good results in cross-senor validation dataset in the future.

CROSS-VALIDATION OF ARTIFICIAL NEURAL NETWORK FOR LANDSLIDE SUSCEPTIBILITY ANALYSIS: A CASE STUDY OF KOREA

  • LEE SARO;LEE MOUNG-JIN;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.298-301
    • /
    • 2004
  • The aim of this study is to cross-validate of spatial probability model, artificial neural network at Boun, Korea, using a Geographic Information System (GIS). Landslide locations were identified in the Boun, Janghung and Youngin areas from interpretation of aerial photographs, field surveys, and maps of the topography, soil type, forest cover and land use were constructed to spatial data-sets. The factors that influence landslide occurrence, such as slope, aspect and curvature of topography, were calculated from the topographic database. Topographic type, texture, material, drainage and effective soil thickness were extracted from the soil database, and type, diameter, age and density of forest were extracted from the forest database. Lithology was extracted from the geological database, and land use was classified from the Landsat TM image satellite image. Landslide susceptibility was analyzed using the landslide­occurrence factors by artificial neural network model. For the validation and cross-validation, the result of the analysis was applied to each study areas. The validation and cross-validate results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations.

  • PDF

Preliminary Results of Surveillance Data Processing for Design of Prototype ADS-B/TIS-B Validation Testbed (연구용 ADS-B/TIS-B Validation Testbed 설계를 위한 항공감시데이터 처리의 예비 결과)

  • Song, Jae-Hoon;Oh, Kyung-Ryoon;Kim, In-Kyu;Lee, Jang-Yeon
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.6
    • /
    • pp.539-547
    • /
    • 2008
  • In this paper, preliminary results for design of prototype ADS-ADS-B/TIS-B Validation Testbed (AVT) are described. Automatic Dependent Surveillance (ADS-B) is a novel surveillance concept using the Global Navigation Satellite System (GNSS) and a digital datalink. Air traffic information from ADS-B non-equipped aircraft is not acquired since ADS-B is a dependent surveillance. Traffic Information Service-Broadcast (TIS-B) provides surveillance data from Secondary surveillance Radar (SSR) for ADS-B non-equipped aircraft. AVT is based on ADS-B and TIS-B as an integrated platform for air traffic surveillance system for CNS/ATM.

  • PDF

Validation of GPS Based Precise Orbits Using SLR Observations (레이저 거리측정(SLR) 데이터를 사용한 GPS 기반 정밀궤도결정 시스템 결과의 검증)

  • Kim, Young-Rok;Park, Eun-Seo;Park, Sang-Young;Choi, Kyu-Hong;Hwang, Yoo-La;Kim, Hae-Yeon;Lee, Byoung-Sun;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.89-98
    • /
    • 2009
  • In this study, the YLPODS (Yonsei Laser-ranging Precision Orbit Determination System) is developed for POD using SLR (Satellite Laser Ranging) NP (Normal Point) observations. The performance of YLPODS is tested using SLR NP observations of TOPEX/POSEIDON and CHAMP satellite. JPL's POE (Precision Orbit Ephemeris) is assumed to be true orbit, the measurement residual RMS (Root Mean Square) and the orbit accuracy (radial, along-track, cross-track) are investigated. The validation of POD using GPS (Global Positioning System) raw data is achieved by YLPODS performance and highly accurate SLR NP observations. YGPODS (Yonsei GPS-based Precision Orbit Determination System) is used for generating GPS based precise orbits for TOPEX/POSEIDON. The initial orbit for YLPODS is derived from the YGPODS results. To validate the YGPODS results the range residual of the first adjustment of YLPODS is investigated. The YLPODS results using SLR NP observations of TOPEX/POSEIDON and CHAMP satellite show that the range residual is less than 10 cm and the orbit accuracy is about 1 m level. The validation results of the YGPODS orbits using SLR NP observations of the TOPEX/POSEIDON satellite show that the range residual is less than 10 cm. This result predicts that the accuracy of this GPS based orbits is about 1m level and it is compared with JPL's POE. Thus this result presents that the YLPODS can be used for POD validation using SLR NP observations such as STSAT-2 and KOMPSAT-5.

Analysis of Characteristics of Air Pollution Over Asia with Satellite-derived $NO_2$ and HCHO using Statistical Methods (환경 위성관측자료의 통계분석을 통한 동아시아 대기오염특성 연구)

  • Baek, K.H.;Kim, Jae Hwan
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.495-503
    • /
    • 2010
  • Satellite data have an intrinsic problem due to a number of various physical parameters, which can have a similar effect on measured radiance. Most evaluations of satellite performance have relied on comparisons with limited spatial and temporal resolution of ground-based measurements such as soundings and in-situ measurements. In order to overcome this problem, a new way of satellite data evaluation is suggested with statistical tools such as empirical orthogonal function(EOF), and singular value decomposition(SVD). The EOF analyses with OMI and OMI HCHO over northeast Asia show that the spatial pattern show high correlation with population density. This suggests that human activity is a major source of as well as HCHO over this region. However, this analysis is contradictory to the previous finding with GOME HCHO that biogenic activity is the main driving mechanism(Fu et al., 2007). To verify the source of HCHO over this region, we performed the EOF analyses with vegetation and HCHO distribution. The results showed no coherence in the spatial and temporal pattern between two factors. Rather, the additional SVD analysis between $NO_2$ and HCHO shows consistency in spatial and temporal coherence. This outcome suggests that the anthropogenic emission is the main source of HCHO over the region. We speculate that the previous study appears to be due to low temporal and spatial resolution of GOME measurements or uncertainty in model input data.