• Title/Summary/Keyword: Satellite structure

Search Result 783, Processing Time 0.028 seconds

DEVELOPMENT OF PYRAMIDAL TYPE 2-AXES ANALOG SUN SENSOR (피라미드형 2축 아날로그 태양센서의 개발)

  • 이성호;이현우;남명룡;박동조
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.267-276
    • /
    • 2000
  • PSS(Pyramidal type 2-axes Analog Sun Sensor) which will be used for KAISTSAT-4 is designed to be small, light, low in power consumptions, and adequate for small satellite attitude sensor. The PSS for the KAISTSAT-4 consists of the pyramidal structure, solar cells and amplifier. The pyramidal structure is suitable for the 2-axes sensing, Solar cells are made up of a rectangular shape of crystal silicon. The PSS measures the angle of incident light and initial satellite attitude measurement, and provides an alarm for the sunlight-sensitive payloads. This paper explains the PSS structure and the characteristic test result about the PSS with $\pm$$50^{\circ}$in FOV, less than $\pm$$3^{\circ}$in accuracy.

  • PDF

Development of Monopropellant Propulsion System for Low Earth Orbit Observation Satellite

  • Lee, Kyun-Ho;Yu, Myoung-Jong;Choi, Joon-Min
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.61-70
    • /
    • 2005
  • The currently developed propulsion system(PS) is composed of propellant tank, valves, thrusters, interconnecting line assembly and thermal hardwares to prevent propellant freezing in the space environment. Comprehensive engineering analyses in the structure, thermal, flow and plume fields are performed to evaluate main design parameters and to verify their suitabilities concurrently at the design phase. The integrated PS has undergone a series of acceptance tests to verify workmanship, performance, and functionality prior to spacecraft level integration. After all the processes of assembly, integration and test are completed, the PS is integrated with the satellite bus system successfully. At present, the severe environmental tests have been carried out to evaluate functionality performances of satellite bus system. This paper summarizes an overall development process of monopropellant propulsion system for the attitude and orbit control of LEO(Low Earth Orbit) observation satellite from the design engineering up to the integration and test.

Attitude Stability of Satellite using Lyapunov equation (Lyapunov 방정식을 이용한 위성체 자세 안정화)

  • 천현경;문종우;이우승;박종국
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.720-723
    • /
    • 1999
  • For that the attitude control performance test of the satellite, dynamic analysis of satellite structure performed in reference with KOREASAT, and the equation of motion of rigid bodies was derivated. For attitude stability, Lyapunov's stability theorem and state space expression were applied to dynamic equation of satellite. To prove efficiency of our method, simulations are performed and result are shown.

  • PDF

The establishment of requirement and kinematic analysis of mechanism for deployable optical structure (전개형 광학구조체용 메커니즘 요구조건 수립 및 후보 메커니즘의 기구학적 해석)

  • Jeong, Seongmoon;Choi, Junwoo;Lee, Dongkyu;Hwang, Kukha;Kim, Sangwoo;Kim, Jangho;Kim, Byungkyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.701-706
    • /
    • 2014
  • In these days, there have been numerous researches on nano and micro satellites under the slogan of "Faster, Smaller, Better, Cheaper". Since optical structure occupies large portion of satellite volume, research on deployable optical structure gains great attention to reduce total volume of the satellite. In this paper, we establish the requirement of deployable optical structure based on specification of conventional optical structure and propose two candidate mechanisms which can satisfy the degree of deployment precision. Then, in order to evaluate the degree of deployment precision, we carry out kinematic analysis on de-space among tilt, de-space and de-center which influences optical characteristic of a satellite.

Image Fusion Framework for Enhancing Spatial Resolution of Satellite Image using Structure-Texture Decomposition (구조-텍스처 분할을 이용한 위성영상 융합 프레임워크)

  • Yoo, Daehoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.21-29
    • /
    • 2019
  • This paper proposes a novel framework for image fusion of satellite imagery to enhance spatial resolution of the image via structure-texture decomposition. The resolution of the satellite imagery depends on the sensors, for example, panchromatic images have high spatial resolution but only a single gray band whereas multi-spectral images have low spatial resolution but multiple bands. To enhance the spatial resolution of low-resolution images, such as multi-spectral or infrared images, the proposed framework combines the structures from the low-resolution image and the textures from the high-resolution image. To improve the spatial quality of structural edges, the structure image from the low-resolution image is guided filtered with the structure image from the high-resolution image as the guidance image. The combination step is performed by pixel-wise addition of the filtered structure image and the texture image. Quantitative and qualitative evaluation demonstrate the proposed method preserves spectral and spatial fidelity of input images.

Comparative Analysis of Bolt Torque Calculation Methods for Space Applications (우주산업용 볼트토크 계산법에 대한 비교 및 실험적 검증)

  • Seo, Ji-Hwan;Kim, Sun-Won;Kim, Chang-Ho;Jun, Hyuoung-Yoll;Jeong, Gyu;Lim, Jae Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.68-75
    • /
    • 2017
  • In this study, the bolt torque calculation method for space industry was compared and verified experimentally. Currently, NASA, European Aerospace Agency, and US National Defense Standards are proposing standards for bolt torque estimation. However, these standards vary slightly and require a high level of comprehension. To address these challenges, we selected typical equations among the widely-used bolt torque calculation methodologies, and the predicted values were verified via clamping force test. In addition, we examined the changes in clamping force associated with handling and refastening.

Spectrum and Equivalent Transient Vibration Analysis of Small Composite Satellite Structure (소형 복합재위성의 스팩트럼 및 과도진동해석)

  • Cho, Hee-Keun;Seo, Jung-Ki;Myung, Noh-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.586-594
    • /
    • 2009
  • This paper is the study on random, sinusoidal and shock vibration responses for the STSAT-3(science and technology satellite-3) proto-model which is the first small size all-composite satellite in Korea. The structure system of the STSAT-3 forms box type structure by joining several hybrid sandwich panels comprised of honeycomb core and carbon fiber reinforced laminated composite skins on both side. Mode shape, stress, displacement and acceleration responses are obtained on both the frequency domain and time domain by means of a commercial FEA software MSC/NASTRAN. From these analysis results, failure, safety factor and design validity are assessed. These results can be successfully applicable as reference data when a new satellite is developed as well as giving out an excellent criteria in satellite vibration treatment design.

Development and Testing of Satellite Operation System for Korea Multipurpose Satellite-I

  • Mo, Hee-Sook;Lee, Ho-Jin;Lee, Seong-Pal
    • ETRI Journal
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • The Satellite Operation System (SOS) has been developed for a low earth orbiting remote sensing satellite, Korea Multipurpose Satellite-I, to monitor and control the spacecraft as well as to perform the mission operation. SOS was designed to operate on UNIX in the HP workstations. In the design of SOS, flexibility, reliability, expandability and interoperability were the main objectives. In order to achieve these objectives, a CASE tool, a database management system, consultative committee for space data systems recommendation, and a real-time distributed processing middle-ware have been integrated into the system. A database driven structure was adopted as the baseline architecture for a generic machine-independent, mission specific database. Also a logical address based inter-process communication scheme was introduced for a distributed allocation of the network resources. Specifically, a hotstandby redundancy scheme was highlighted in the design seeking for higher system reliability and uninterrupted service required in a real-time fashion during the satellite passes. Through various tests, SOS had been verified its functional, performance, and inter-face requirements. Design, implementation, and testing of the SOS for KOMPSAT-I is presented in this paper.

  • PDF

Design, Implementation and Validation of the KOMPSAT Spacecraft Simulator

  • Choi, Wan Sik;Lee, Sanguk;Eun, Jong Won;Choi, Han Jun;Chae, Dong Suk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.2
    • /
    • pp.50-67
    • /
    • 2000
  • The spacecraft simulator is used for command validation, operational check of the Satellite Operation Subsystem (SOS), spacecraft anomaly analysis support, satellite operator training etc. In this paper, S/W design features and modeling characteristics of the KOMPSAT Spacecraft Simulator Subsystem (SIM) are described. Validation procedures and simulation results are also provided. The SIM provides extensive simulation capabilities by including models for most of the spacecraft subsystems. The software structure of the SIM was designed and implemented so as to support operations not only in real-time but also in non real-time by utilizing the Hewlett Packard (HP) UNIX functions. The SIM incorporates as many user-friendly Man Machine Interface (MMI) windows as possible so that all the SIM normal operations can be executed through the MMI windows.

  • PDF