• Title/Summary/Keyword: Satellite remote sensing data

Search Result 1,661, Processing Time 0.032 seconds

Introduction of Japanese Ocean Flux data sets with Use of Remote sensing Observations (J-OFURO)

  • Kubota, Masahisa
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.231-236
    • /
    • 1999
  • Accurate ocean surface fluxes with high resolution are critical for understanding a mechanism of global climate. However, it is difficult to derive those fluxes by using ocean observation data because the number of ocean observation data is extremely small and the distribution is inhomogeneous. On the other hand. satellite data are characterized by the high density, the high resolution and the homogeneity. Therefore, it can be considered that we obtain accurate ocean surface by using satellite data. Recently we constructed ocean surface data sets mainly using satellite data. The data set is named by Japanese Ocean Flux data sets with Use of Remote sensing Observations (J-OFURO). Here, we introduce J-OFURO. The data set includes shortwave radiation, longwave radiation, latent heat flux, sensible heat flux, and momentum flux etc. Moreover, sea surface dynamic topography data are included in the data set. Radiation data sets covers western Pacific and eastern Indian Ocean because we use a Japanese geostationally satellite (GMS) to estimate radiation fluxes. On the other hand, turbulent heat fluxes are globally estimated. The constructed data sets are used and shows the effectiveness for many scientific studies.

  • PDF

Study on the Urban Heat Island(UHI) using Remote Sensing data

  • Kyung, H.M.;Kim, Y.S.;Park, K.W.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.846-848
    • /
    • 2003
  • Analysis of UHI in Busan region using Landsat TM data. Between 1987 and 1997 surface temperature increased clearly. Land usage of Busan is construed that instigate UHI changing into industry and commerce area. Also, intensity of UHI in surface temperature appeared strongly in industrial area and business area. On the contrary, residential area, mountain area, suburb area did not appear strongly.

  • PDF

Software Buffering Technique For Real-time Recording of High Speed Satellite Data

  • Shin, Dong-Seok;Choi, Wook-Hyun;Kim, Moon-Gyu;Park, Won-Kyu
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.3
    • /
    • pp.147-153
    • /
    • 2002
  • The real-time reception and recording of down-link mission data from a satellite requires the highest reliability because the data lost in receiving process cannot be recovered. The data receiving and recording system has moved from a set of dedicated hardware and software components to commercial-off-the-shelf (COTS) components in order to reduce the system cost as well as to upgrade the system easily for handling other satellite data. The use of COTS hardware and middleware components prevents the system developer from correcting or modifying the internal operations of the COTS components, and hence, instant performance degradation of the COTS components which affects the reliable data acquisition must be covered by a software algorithm. This paper introduces the instant performance problem of a COTS data recording device which leads to the data loss in the real-time data reception and recording process. As a result, the requirement of the modification of the conventional data read/write technique is issued. In order to overcome the data loss problem due to the use of COTS components and the conventional software technique, a new algorithm called a software buffering technique is proposed. The experiments show that the application of the proposed technique results in reliable real-time reception and recording of high speed serial data.

Evaluation of Utilization of Satellite Remote Sensing Data for Drought Monitoring (가뭄 모니터링을 위한 인공위성 원격탐사자료의 활용 가능성 평가)

  • Won, Jeongeun;Son, Youn-Suk;Lee, Sangho;Kang, Limseok;Kim, Sangdan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1803-1818
    • /
    • 2021
  • As the frequency of drought increases due to climate change, it is very important to have a monitoring system that can accurately determine the situation of widespread drought. However, while ground-based meteorological data has limitations in identifying all the complex droughts in Korea, satellite remote sensing data can be effectively used to identify the spatial characteristics of drought in a wide range of regions and to detect drought. This study attempted to analyze the possibility of using remote sensing data for drought identification in South Korea. In order to monitor various aspects of drought, remote sensing and ground observation data of precipitation and potential evapotranspiration, which are major variables affecting drought, were collected. The evaluation of the applicability of remote sensing data was conducted focusing on the comparison with the observation data. First, to evaluate the applicability and accuracy of remote sensing data, the correlations with observation data were analyzed, and drought indices of various aspects were calculated using precipitation and potential evapotranspiration for meteorological drought monitoring. Then, to evaluate the drought monitoring ability of remote sensing data, the drought reproducibility of the past was confirmed using the drought index. Finally, a high-resolution drought map using remote sensing data was prepared to evaluate the possibility of using remote sensing data for actual drought in South Korea. Through the application of remote sensing data, it was judged that it would be possible to identify and understand various drought conditions occurring in all regions of South Korea, including unmeasured watersheds in the future.

A Southeast Asia Environmental Information Web Portal

  • Low, John;Liew, Soo-Chin;Lim, Agnes;Chang, Chew-Wai;Kwoh, Leong-Keong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1006-1008
    • /
    • 2003
  • In this paper, we describe the development of a Southeast Asia environmental information web portal based on near real time MODIS Level 2 and higher level products generated from the direct broadcast data received at the Centre for Remote Imaging, Sensing and Processing (CRISP). This web portal aims to deliver timely environmental information to interested users in the region. Interpreted data will be provided instead of raw satellite data to reduce operational requirements on our system, and to enable users with limited bandwidths to have access to the system.

  • PDF

Automatic Road Extraction by Gradient Direction Profile Algorithm (GDPA) using High-Resolution Satellite Imagery: Experiment Study

  • Lee, Ki-Won;Yu, Young-Chul;Lee, Bong-Gyu
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.393-402
    • /
    • 2003
  • In times of the civil uses of commercialized high-resolution satellite imagery, applications of remote sensing have been widely extended to the new fields or the problem solving beyond traditional application domains. Transportation application of this sensor data, related to the automatic or semiautomatic road extraction, is regarded as one of the important issues in uses of remote sensing imagery. Related to these trends, this study focuses on automatic road extraction using Gradient Direction Profile Algorithm (GDPA) scheme, with IKONOS panchromatic imagery having 1 meter resolution. For this, the GDPA scheme and its main modules were reviewed with processing steps and implemented as a prototype software. Using the extracted bi-level image and ground truth coming from actual GIS layer, overall accuracy evaluation and ranking error-assessment were performed. As the processed results, road information can be automatically extracted; by the way, it is pointed out that some user-defined variables should be carefully determined in using high-resolution satellite imagery in the dense or low contrast areas. While, the GDPA method needs additional processing, because direct results using this method do not produce high overall accuracy or ranking value. The main advantage of the GDPA scheme on road features extraction can be noted as its performance and further applicability. This experiment study can be extended into practical application fields related to remote sensing.

QuickBird - Geometric Correction, Data Fusion, and Automatic DEM Extraction

  • Cheng, Philip;Toutin, Thierry;Zhang, Yun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.216-218
    • /
    • 2003
  • QuickBird satellite is quickly becoming the best choice for high-resolution mapping using satellite images. In this paper, we will describe the followings: (1) how to correct QuickBird data using different geometric correction methods, (2) data fusion using QuickBird panchromatic and multispectral data, and (3) automatic DEM extraction using QuickBird stereo data.

  • PDF

Uncertainty Analysis of Flash-flood Prediction using Remote Sensing and a Geographic Information System based on GcIUH in the Yeongdeok Basin, Korea

  • Choi, Hyun;Chung, Yong-Hyun;Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.884-887
    • /
    • 2006
  • This paper focuses on minimizing flood damage in the Yeongdeok basin of South Korea by establishing a flood prediction model based on a geographic information system (GIS), remote sensing, and geomorphoclimatic instantaneous unit hydrograph (GcIUH) techniques. The GIS database for flash flood prediction was created using data from digital elevation models (DEMs), soil maps, and Landsat satellite imagery. Flood prediction was based on the peak discharge calculated at the sub-basin scale using hydrogeomorphologic techniques and the threshold runoff value. Using the developed flash flood prediction model, rainfall conditions with the potential to cause flooding were determined based on the cumulative rainfall for 20 minutes, considering rainfall duration, peak discharge, and flooding in the Yeongdeok basin.

  • PDF

PROBABILISTIC LANDSLIDE SUSCEPTIBILITY AND FACTOR EFFECT ANALYSIS

  • LEE SARO;AB TALIB JASMI
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.306-309
    • /
    • 2004
  • The susceptibility of landslides and the effect of landslide-related factors at Penang in Malaysia using the Geographic Information System (GIS) and remote sensing data have been evaluated. Landslide locations were identified in the study area from interpretation of aerial photographs and from field surveys. Topographical and geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. The factors chosen that influence landslide occurrence were: topographic slope, topographic aspect, topographic curvature and distance from drainage, all from the topographic database; lithology and distance from lineament, taken from the geologic database; land use from Landsat TM (Thermatic Mapper) satellite images; and the vegetation index value from SPOT HRV (High Resolution Visible) satellite images. Landslide hazardous areas were analysed and mapped using the landslide-occurrence factors employing the probability-frequency ratio method. To assess the effect of these factors, each factor was excluded from the analysis, and its effect verified using the landslide location data. As a result, land 'cover had relatively positive effects, and lithology had relatively negative effects on the landslide susceptibility maps in the study area. In addition, the landslide susceptibility maps using the all factors showed the relatively good results.

  • PDF

Sea fog detection near Korea peninsula by using GMS-5 Satellite Data(A case study)

  • Chung, Hyo-Sang;Hwang, Byong-Jun;Kim, Young-Haw;Son, Eun-Ha
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.214-218
    • /
    • 1999
  • The aim of our study is to develop new algorism for sea fog detection by using Geostational Meteorological Satellite-5(GMS-5) and suggest the techniques of its continuous detection. So as to detect daytime sea fog/stratus(00UTC, May 10, 1999), visible accumulated histogram method and surface albedo method are used. The characteristic value during daytime showed A(min) > 20% and DA < 10% when visble accumulated histogram method was applied. And the sea fog region which detected is of similarity in composite image and surface albedo method. In case of nighttime sea fog(18UTC, May 10, 1999), infrared accumulated histogram method and maximum brightness temperature method are used, respectively. Maximum brightness temperature method(T_max method) detected sea fog better than IR accumulated histogram method. In case of T_max method, when infrared value is larger than T_max, fog is detected, where T_max is an unique value, maximum infrared value in each pixel during one month. Then T_max is beneath 700hpa temperature of GDAPS(Global Data Assimilation and Prediction System). Sea fog region which detected by T_max method was similar to the result of National Oceanic and Atmosheric Administration/Advanced Very High Resolution Radiometer (NOAA/AVHRR) DCD(Dual Channel Difference). But inland visibility and relative humidity didn't always agreed well.

  • PDF