• 제목/요약/키워드: Satellite range measurement

Search Result 94, Processing Time 0.02 seconds

Development of Relative Position Measuring Device for Moving Target in Local Area (국소영역에서 이동표적의 상대위치 측정 장치 개발)

  • Seo, Myoung Kook
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.8-14
    • /
    • 2020
  • Intelligent devices using ICT technology have been introduced in the field of construction machinery to improve productivity and stability. Among the intelligent devices, Machine Guidance is a device that provides real-time posture, location, and work range to drivers by installing various sensors, controllers, and satellite navigation systems on construction machines. Conversely, the efficiency of equipment that requires location information, such as machine guidance, will be greatly reduced in buildings, and tunnels in the GPS blind spots. Thus, the other high-precision positioning technologies are required in the GPS blind spot zone. In this study, we will develop a relative position measurement system that provides precise location information such as construction machinery and robots in a local area where the GPS reception is difficult. A relative position measurement system tracks a marker in the form of a sphere installed on a vehicle by using the image base tracking technology, and measures the distance and direction information to the marker to calculate a position.

The development of statistical methods for retrieving MODIS missing data: Mean bias, regressions analysis and local variation method (MODIS 손실 자료 복원을 위한 통계적 방법 개발: 평균 편차 방법, 회귀 분석 방법과 지역 변동 방법)

  • Kim, Min Wook;Yi, Jonghyuk;Park, Yeon Gu;Song, Junghyun
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.94-101
    • /
    • 2016
  • Satellite data for remote sensing technology has limitations, especially with visible range sensor, cloud and/or other environmental factors cause missing data. In this study, using land surface temperature data from the MODerate resolution Imaging Spectro-radiometer(MODIS), we developed retrieving methods for satellite missing data and developed three methods; mean bias, regression analysis and local variation method. These methods used the previous day data as reference data. In order to validate these methods, we selected a specific measurement ratio using artificial missing data from 2014 to 2015. The local variation method showed low accuracy with root mean square error(RMSE) more than 2 K in some cases, and the regression analysis method showed reliable results in most cases with small RMSE values, 1.13 K, approximately. RMSE with the mean bias method was similar to RMSE with the regression analysis method, 1.32 K, approximately.

Ocean Scanning Multi-spectral Imager (OSMI) Pre-Launch Radiometric Performance Analysis

  • Cho, Young-Min
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.390-395
    • /
    • 1999
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the Korean Multi-purpose SATellite (KOMPSAT) to perform worldwide ocean color monitoring for the study of biological oceanography KOMPSAT will be launched in the middle of November this year. The radiometric performance of OSMI is analyzed for various gain settings in the viewpoint of the instrument developer for OSMI calibration and application based on its ground performance measurement data for 8 primary spectral bands of OSMI. The radiometric response linearity and dynamic range are analyzed for the image radiometric calibration and the estimation of OSMI image quality for the ocean remote sensing area. The dynamic range is compared with the nominal input radiance for the ocean and the land. The noise equivalent radiance (NER) corresponding to the instrument radiometric noise is compared with the radiometric resolution of signal digitization (1-count equivalent radiance). The best gain setting of OSMI for ocean monitoring is recommended. This analysis is considered to be useful for the OSMI mission and operation planning, the OSMI image data calibration, and users' understanding about OSMI image quality.

  • PDF

Estimation of Flood Discharge Using Satellite-Derived Rainfall in Abroad Watersheds - A Case Study of Sebou Watershed, Morocco - (위성 강우자료를 이용한 해외 유역 홍수량 추정 - 모로코 세부강 유역을 대상으로 -)

  • KIM, Joo-Hun;CHOI, Yun-Seok;KIM, Kyung-Tak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.141-152
    • /
    • 2017
  • This paper presents a technical method for flood estimation based on satellite rainfall and satellite rainfall correction method for watersheds lacking measurement data. The study area was the Sebou Watershed, Morocco. The Integrated Flood Analysis System(IFAS) and Grid-based Rainfall-Runoff Model(GRM) were applied to estimate watershed runoff. Daily rainfall from ground gauges and satellite-derived hourly data were used. In the runoff simulation using satellite rainfall data, the composites of the daily gauge rainfall and the hourly satellite data were applied. The Shuttle Radar Topographic Mission Digital Elevation Model(SRTM DEM) with a 90m spatial resolution and 1km resolution data from Global map land cover and United States Food and Agriculture Organization(US FAO) Harmonized World Soil Database(HWSD) were used. Underestimated satellite rainfall data were calibrated using ground gauge data. The simulation results using the revised satellite rainfall data were $5,878{\sim}7,434m^3/s$ and $6,140{\sim}7,437m^3/s$ based on the IFAS and GRM, respectively. The peak discharge during flooding of Sebou River Watershed in 2009~2010 was estimated to range from $5,800m^3/s$ to $7,500m^3/s$. The flood estimations from the two hydrologic models using satellite-derived rainfall data were similar. Therefore, the calibration method using satellite rainfall suggested in this study can be applied to estimate the flood discharge of watersheds lacking observational data.

Performance Comparison of the Batch Filter Based on the Unscented Transformation and Other Batch Filters for Satellite Orbit Determination (인공위성 궤도결정을 위한 Unscented 변환 기반의 배치필터와 다른 배치필터들과의 성능비교)

  • Park, Eun-Seo;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.75-88
    • /
    • 2009
  • The main purpose of the current research is to introduce the alternative algorithm of the non-recursive batch filter based on the unscented transformation in which the linearization process is unnecessary. The presented algorithm is applied to the orbit determination of a low earth orbiting satellite and compared its results with those of the well-known Bayesian batch least squares estimation and the iterative UKF smoother (IUKS). The system dynamic equations consist of the Earth's geo-potential, the atmospheric drag, solar radiation pressure and the lunar/solar gravitational perturbations. The range, azimuth and elevation angles of the satellite measured from ground stations are used for orbit determination. The characteristics of the non recursive unscented batch filter are analyzed for various aspects, including accuracy of the determined orbit, sensitivity to the initial uncertainty, measurement noise and stability performance in a realistic dynamic system and measurement model. As a result, under large non-linear conditions, the presented non-recursive batch filter yields more accurate results than the other batch filters about 5% for initial uncertainty test and 12% for measurement noise test. Moreover, the presented filter exhibits better convergence reliability than the Bayesian least squares. Hence, it is concluded that the non-recursive batch filter based on the unscented transformation is effectively applicable for highly nonlinear batch estimation problems.

Velocity Estimation of Moving Targets on the Sea Surface by Azimuth Differentials of Simulated-SAR Image

  • Yang, Chang-Su;Kim, Youn-Seop;Ouchi, Kazuo
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.297-304
    • /
    • 2010
  • Since the change in Doppler centroid according to moving targets brings alteration to the phase in azimuth differential signals of synthetic aperture radar (SAR) data, one can measure the velocity of the moving targets using this effect. In this study, we will investigate theoretically measuring the velocity of an object from azimuth differential signals by using range compressed data which is the interim outcome of treatment from the simulated SAR raw data of moving targets on the background of sea clutter. Also, it will provide evaluation for the elements that affect the estimation error of velocity from a single SAR sensor. By making RADARSAT-1 simulated image as a specific case, the research includes comparisons for the means of velocity measurement classified by the directions of movement in the four following cases. 1. A case of a single target without currents, 2. A case of a single target with tidal currents of 0.5 m/s, 1 m/s, and 3 m/s, 3. A case of two targets on a same azimuth line moving in a same direction and velocity, 4. A case of a single target contiguous to land where radar backscatter is strong. As a result, when two moving targets exist in SAR image outside the range of approximately 256 pixels, the velocity of the object can be measured with high accuracy. However, when other moving targets exist in the range of approximately 128 pixels or when the target was contiguous to the land of strong backscatter coefficient (NRCS: normalized radar cross section), the estimated velocity was in error by 10% at the maximum. This is because in the process of assuming the target's location, an error occurs due to the differential signals affected by other scatterers.

Validation of Sea Surface Temperature (SST) from Satellite Passive Microwave Sensor (GPM/GMI) and Causes of SST Errors in the Northwest Pacific

  • Kim, Hee-Young;Park, Kyung-Ae;Chung, Sung-Rae;Baek, Seon-Kyun;Lee, Byung-Il;Shin, In-Chul;Chung, Chu-Yong;Kim, Jae-Gwan;Jung, Won-Chan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • Passive microwave sea surface temperatures (SST) were validated in the Northwest Pacific using a total of 102,294 collocated matchup data between Global Precipitation Measurement (GPM) / GPM Microwave Sensor(GMI) data and oceanic in-situ temperature measurements from March 2014 to December 2016. A root-mean-square (RMS) error and a bias error of the GMI SST measurements were evaluated to $0.93^{\circ}C$ and $0.05^{\circ}C$, respectively. The SST differences between GMI and in-situ measurements were caused by various factors such as wind speed, columnar atmospheric water vapor, land contamination near coastline or islands. The GMI SSTs were found to be higher than the in-situ temperature measurements at low wind speed (<6 m/s) during the daytime. As the wind speed increased at night, SST errors showed positive bias. In addition, other factors, coming from atmospheric water vapor, sensitivity degradation at a low temperature range, and land contamination, also contributed to the errors. One of remarkable characteristics of the errors was their latitudinal dependence with large errors at high latitudes above $30^{\circ}N$. Seasonal characteristics revealed that the errors were most frequently observed in winter with a significant positive deviation. This implies that SST errors tend to be large under conditions of high wind speeds and low SSTs. Understanding of microwave SST errors in this study is anticipated to compensate less temporal capability of Infrared SSTs and to contribute to increase a satellite observation rate with time, especially in SST composite process.

Characteristics of Remote Sensors on KOMPSAT-I (다목적 실용위성 1호 탑재 센서의 특성)

  • 조영민;백홍렬
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.1
    • /
    • pp.1-16
    • /
    • 1996
  • Korea Aerospace Research Institute(KARI) is developing a Korea Multi-Purpose Satellite I(KOMPSAT-I) which accommodates Electro-Optical Camera(EOC), Ocean Color Imager(OCI), Space Physics Sensor(SPS) for cartography, ocean color monitoring, and space environment monitoring respectively. The satellite has the weight of about 500 kg and is operated on the sun synchronized orbit with the altitude of 685km, the orbit period of 98 minutes, and the orbit revisit time of 28days. The satellite will be launched in the third quarter of 1999 and its lifetime is more than 3 years. EOC has cartography mission to provide images for the production of scale maps, including digital elevation models, of Korea from a remote earth view in the KOMPSAT orbit. EOC collects panchromatic imagery with the ground sample distance(GSD) of 6.6m and the swath width of 15km at nadir through the visible spectral band of 510-730 nm. EOC scans the ground track of 800km per orbit by push-broom and body pointed method. OCI mission is worldwide ocean color monitoring for the study of biological oceanography. OCI is a multispectral imager generating 6 color ocean images with and <1km GSD by whisk-broom scanning method. OCI is designed to provide on-orbit spectral band selectability in the spectral range from 400nm to 900nm. The color images are collected through 6 primary spectral bands centered at 443, 490, 510, 555, 670, 865nm or 6 spectral bands selected in the spectral range via ground commands after launch. SPS consists of High Energy Particle Detector(HEPD) and Ionosphere Measurement Sensor(IMS). HEPD has mission to characterize the low altitude high energy particle environment and to study the effects of radiation environment on microelectronics. IMS measures densities and temperature of electrons in the ionosphere and monitors the ionospheric irregularities in KOMPSAT orbit.

A 6-Bit MMIC Digital Attenuator with High Attenuation Accuracy and Small Phase Variation for X-band TR Module Applications (X-band 송수신 모듈을 위한 높은 감쇠 정확도와 작은 위상 변동을 가진 6 비트 MMIC 디지털 감쇠기)

  • Ju, In-Kwon;Yom, In-Bok;Lee, Jeong-Won;Lee, Soo-Ho;Ahn, Chang-Soo;Kim, Sun-Joo;Park, Dong-Un;Oh, Seung-Hyeup
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.452-459
    • /
    • 2009
  • A 6-bit MMIC digital attenuator applicable to X-band TR module has been developed by using $0.5{\mu}m$GaAs pHEMT processes. The Switched-T attenuator scheme and the switched-path attenuator scheme were adopted to obtain low insertion loss and small phase variation, respectively. Resistors and transmission lines are optimized to achieve the digital attenuator with high attenuation accuracy and small phase variation. The digital attenuator has RMS error of 0.4dB, resolution of 0.5dB and dynamic range of 31.5dB. The measurement results show that in-out VSWRs are less than 1.5, phase variation is from -7 to +2 degrees and IIP3 is 36.5dBm.

Orbital Parameters Modeling of High Resolution Satellite Imagery for Mapping Applications (매핑을 위한 고해상 위성영상의 궤도요소 모델링)

  • 유환희;성재열;김동규;진경혁
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.4
    • /
    • pp.405-414
    • /
    • 2000
  • A new generation of commercial satellites like IKONOS, SPOT-5 and OrbView-3,4 will have improved features, especially an higher geometric resolution with a better dynamic radiometric range. In addition high precision orbital position and attitude data will be provided by the on-board GPS receivers, IMU(Inertial Measurement Units) and star trackers. This additional information allows for reducing the number of ground control points. Furthermore this information enables direct georeferencing of imagery without ground control points. In our work mathematical models for calculating the satellite orbital parameters of SPOT-3 and KOMPSAT-1 were developed and can be easily extended to process images from other high resolution imaging systems as they become available.

  • PDF