딥러닝 알고리즘 중 과거의 정보를 저장하는 문제(장기종속성 문제)가 있는 단순 RNN(Simple Recurrent Neural Network)의 단점을 해결한 LSTM(Long short-term memory)이 등장하면서 특정한 유역의 강우-유출 모형을 구축하는 연구가 증가하고 있다. 그러나 하나의 모형으로 모든 유역에 대한 유출을 예측하는 지역화 강우-유출 모형은 서로 다른 유역의 식생, 지형 등의 차이에서 발생하는 수문학적 행동의 차이를 학습해야 하므로 모형 구축에 어려움이 있다. 따라서, 본 연구에서는 국내 12개의 유역에 대하여 LSTM 기반 분포형 지역화 강우-유출 모형을 구축한 이후 강우 이외의 보조 자료에 따른 정확도를 살펴보았다. 국내 12개 유역의 7년 (2012.01.01-2018.12.31) 동안의 49개 격자(4km2)에 대한 10분 간격 레이더 강우, MODIS 위성 이미지 영상을 활용한 식생지수 (Normalized Difference Vegetation Index), 10분 간격 기온, 유역 평균 경사, 단순 하천 경사를 입력자료로 활용하였으며 10분 간격 유량 자료를 출력 자료로 사용하여 LSTM 기반 분포형 지역화 강우-유출 모형을 구축하였다. 이후 구축된 모형의 성능을 검증하기 위해 학습에 사용되지 않은 3개의 유역에 대한 자료를 활용하여 Nash-Sutcliffe Model Efficiency Coefficient (NSE)를 확인하였다. 식생지수를 보조 자료를 활용하였을 경우 제안한 모형은 3개의 검증 유역에 대하여 하천 흐름을 높은 정확도로 예측하였으며 딥러닝 모형이 위성 자료를 통하여 식생에 의한 차단 및 토양 침투와 같은 동적 요소의 학습이 가능함을 나타낸다.
강우에 의해서 발생하는 토양유실은 비옥한 표토를 유실시켜 생산성의 저하를 초래하고, 유실된 토양입자는 하천이나 호수, 댐 등에 퇴적되어 저수용량의 감소와 수질관리에 어려움을 야기 시키므로 이에 대한 대처가 필요하다. 본 연구에서는 위성 영상과 GIS 기법을 활용하여 유역내 토양침식에 영향을 미치는 토양조건, 피복조건, 지형조건들을 추출하고 이 요소들을 범용토양유실공식(USLE; Universal Soil Loss Equation)에 적용하여 유입퇴적량 및 유입 가능성이 높은 위치를 파악하였다. 또한 유입되어 하상에 쌓여 있는 퇴적량은 투과성이 강한 음향측심기를 활용하여 퇴적층과 지층의 고도 정보를 획득하여 산정하고 유실량과 퇴적량을 비교하여 퇴적되는 비율을 도출하였다.
우리나라에서 발생하는 기상 재해 현상은 주로 태풍, 집중호우, 장마 등 인명 및 경제적인 피해가 크며, 단기간에 국지적으로 나타난다. 현재 재해 감시 및 예보는 주로 종관기상관측체계를 이용하고 있다. 하지만, 우리나라의 복잡한 지형, 인구 밀집 지형, 관측 시기가 일정하지 않은 지형과 같은 조건에서 미계측 자료 및 지역이 다수 존재 때문에 강수의 공간 분포와 강도에 대한 정밀한 정보를 제공하지 못하는 실정이다. 최근 광범위한 관측영역과 공간 분해능의 개선, 자료추출 알고리즘의 개발로 전세계적으로 위성영상 기반 기상관측 자료의 활용성이 증대되고 있다. 본 연구에서는 한반도 지역의 지상 관측데이터와 전지구 격자형 위성 강우자료를 비교하여 한반도의 적용성을 분석하고자 한다. 다양한 위성영상 기반 기상자료인 Climate Hazards Groups InfraRed Precipitation with Station (CHIRPS), Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), Global Precipitation Climatology Centre (GPCC), Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) 4개의 강우위성영상을 수집하여, 1991년부터 2020년까지 30년 데이터를 활용하였다. 강수량 변동성 비교를 위하여 기상청의 종관기상관측장비 (Automated Synoptic Observation System, ASOS), 자동기상관측시설 (Automatic Weather System, AWS) 데이터와 상관 분석을 수행하고, 강우위성영상의 국내 적합성을 판단하고자 한다.
본 논문은 열대저기압, 태풍 및 허리케인의 연구와 분석에 사용되는 몇 가지 마이크로파 방식들을 검토하였다. 마이크로파 신호는 폭풍 속 구름과 비에 의해 잘 흡수되지 않는 장점을 가지기 때문에 격렬한 폭풍을 동반하는 열대저기압의 관측에 있어 매우 유용하다. 그에 대한 장비들로 산란계(scsatterometers), 마이크로파 복사계(microwave radiometers), 합성개구레이더 (synthetic aperture radars; SARs), 강우레이더 (rain radar) 에 대해 살펴보았다. 이러한 마이크로파 장비들로부터 얻어진 열대저기압내의 바람, 강우, 구름분포와 같은 자료들은 태풍의 진로와 강도예측에 중요한 정보를 제공한다. ERS-1, 2 산란계와 RADARSAT-1 SAR로부터 얻어진 세부적인 바람장, 넓은 관측범위를 가지는 SSM/I 로부터 얻은 풍속분포, 높은 해상도를 가지는 TRMM 강우레이더의 강우 강도측정들은 이러한 예를 보여주고 있다. 초기 마이크로파 원격탐사에서 나타났던 해상도, 관측 폭과 같은 한계들은 최근 발사되어 운영되는 위성들의 장비들로 많은 개선이 이루어졌다. 이러한 마이크로파 장비들에 대한 충분한 이해와 활용은 열대저기압의 발생과 강도와 같은 특성들을 규명하는데 큰 역할을 할 것이다.
지구상에서 육지 표면의 76%를 차지하고 있는 식생은 기후 변화와 관련하여 지역 부존 수자원과 환경 및 생태학적 시스템에 큰 변화를 가져올 수 있다. 본 연구에서는 위성 영상을 통해 추출된 NDVI를 통해 미래 식생정보를 예측하고자 넓은 지역에 대한 식생 피복의 파악이 용이한 NOAA 위성의 AVHRR 센서(1994년~2004년)와 Terra 위성의 MODIS 센서(2000년~2004년)로부터 얻을 수 있는 월별 정규화 식생지수(Normalized Difference Vegetation Index, NDVI)를 통하여 현 식생정보를 정량화하였다. 5년 동안의 NDVI 값은 NOAA보다 MODIS가 전체적으로 20% 정도 높게 추출되었다. 이로부터 국내 5대강 유역의 토지피복별 NDVI와 월평균 기상인자(평균기온, 최고기온, 최저기온, 강수량, 일조시간, 풍속, 습도) 사이의 상관관계를 분석하였으며, NDVI는 평균기온과 상관성이 높은 것으로 판단되었다. 상관분석 결과 얻어진 NDVI-기온 선형 회귀식을 이용하여 기후변화 시나리오의 CCCma CGCM2 모의 결과 값으로부터 토지피복에 따른 미래 NDVI를 추정 하였다. NOAA NDVI에 의해 추정 된 미래 식생정보는 현재의 NDVI 최대치와 큰 차이를 보이지 않았지만, 현재 7월에서 8월 사이 최고에 이르렀다가 9월부터 감소하는 NDVI값이 미래에는 10월까지도 높게 지속되는 경향을 보였다. MODIS NDVI에 의해 추정 된 미래 식생정보는 7월에서 8월 사이에 현재보다 약 5% 정도 증가하는 경향을 보였다.
Objective: The present study aimed to survey seasonal changes in reproductive performance of local cows receiving artificial insemination (AI) in the Pursat province of Cambodia, a tropical country, to investigate if ambient conditions affect the reproductive performance of cows as to better understand the major problems regarding cattle production. Methods: The number of cows receiving AI, resultant number of calving, and calving rate were analyzed for those receiving the first AI from 2016 to 2017. The year was divided into three seasons: cool/dry (from November to February), hot/dry (from March to June), and wet (from July to October), based on the maximal temperature and rainfall in Pursat, to analyze the relationship between ambient conditions and the reproductive performance of cows. Body condition scores (BCS) and feeding schemes were also analyzed in these seasons. Results: The number of cows receiving AI was significantly higher in the cool/dry season than the wet season. The number of calving and calving rate were significantly higher in cows receiving AI in the cool/dry season compared with the hot/dry and wet seasons. The cows showed higher BCSs in the cool/dry season compared to the hot/dry and wet seasons probably due to the seasonal changes in the feeding schemes: these cows grazed on wild grasses in the cool/dry season but fed with a limited amount of grasses and straw in the hot/dry and wet seasons. Conclusion: The present study suggests that the low number of cows receiving AI, low number of calving, and low calving rate could be mainly due to poor body condition as a result of the poor feeding schemes during the hot/dry and wet seasons. The improvement of body condition by the refinement of feeding schemes may contribute to an increase in the reproductive performance in cows during the hot/dry and wet seasons in Cambodia.
AQUA/AMSR-E 인공위성 자료를 활용하여 3차원 최적내삽 해수면온도 합성장을 생산하였고 시간평균장과 비교하여 문제점과 한계점을 기술하였다. 3-D SST 합성장은 북태평양 중앙부에서 전체적으로 $0.05^{\circ}C$ 이하의 작은 오차를 보였으나, 위성 결측이 있는 연안에서는 $0.4^{\circ}C$ 이상의 비교적 큰 오차를 유발하였다. 강한 강수나 구름으로 인한 결측이 있는 부분에서는 $0.1-0.15^{\circ}C$에 달하는 오차를 보였다. 시간평균장과 비교한 결과, 구름 부근의 화소에서는 해수면온도를 낮게 계산하는 경향이 있었으며, 해수면온도의 공간적 구배를 감소시키는 평활화가 전체적으로 나타났다. 적도 부근 저위도에서 OI SST는 실제 해수면온도에는 없는 불연속성을 만드는 경향이 있었고, 이는 OI 과정에서 사용한 윈도우의 크기와 해양 현상의 수평 규모가 위도에 따라 변화하는데서 기인하였다. 현상의 공간 규모의 척도인 로스비 내부변형 반경은 북태평양에서 O(1) 정도로 위도에 따른 공간적 변화가 큰 것으로 나타났다. 본 연구는 SST합성장 생산과정에 위도와 해수의 수직적 밀도 구조와 밀접한 관련이 있는 해양 현상의 수평적 규모의 시공간적 변동 특성을 고려해야 함을 제시한다.
이 연구는 1960년부터 2019년까지 북한에서 발생한 산지토사재해의 시공간적 발생경향과 일부 발생 및 복구 사례를 분석하기 위하여 실시하였다. 북한의 산지토사재해 발생이력은 1995년(김정일 집권시기)부터 대외적으로 보고되기 시작하였고, 여름철 호우가 주된 유발요인으로 나타났다. 산림황폐율은 인구밀도와 밀접한 관련성(R2 = 0.4347, p = 0.02)을 보이며, 산림황폐율이 높은 서해안에서 산지토사재해 발생 보고건수가 많은 것으로 나타났다. 이는 인위적 산림훼손이 산림황폐화의 주된 원인이며, 나아가 산지토사재해 발생에도 현저한 영향을 끼쳤음을 시사한다. 위성영상을 통해 표층붕괴, 토석류 및 땅밀림 발생이 확인되었으며, 이러한 산지토사재해는 일반산지뿐만 아니라 다락밭, 채석장, 임도, 산불피해지 등 산림훼손지에서도 발생한 것으로 나타났다. 대부분의 피해지역은 복구사업의 시행 없이 존치되었지만, 일부 지역에서 산복 녹화공 등의 산지사방사업 또는 사방댐, 유도둑 등의 야계사방사업을 시행한 것으로 확인되었다. 이 연구의 결과는 향후 산림복구 및 사방사업 분야의 남북 교류협력 확대에 필요한 기초정보를 제공할 수 있을 것으로 기대된다.
기후변화와 극한기상으로 유발된 다양한 자연재해와 사고로 전세계적으로 수많은 인명과 재산 피해가 발생하고 있다. International Charter와 같은 국제기구간의 상시 공조체계를 구축하고, 이러한 대규모 재난관리와 신속한 복구를 위해 고해상 위성영상 및 공간정보를 제공하고 있다. 국내에서는 국토위성이 본격적으로 정상 운용되면서 국토정보 구축뿐만 아니라 국내·외 대형 재난에 대해 피해분석 정보를 제공하고 있다. 이번 국립재난안전연구원 특별호에서는 2023년 주요 재난사고 발생 현황과 정부의 국가재난안전시스템 개편 대책을 기술하였다. 또한, 연구원에서 재난 상황관리 및 분석을 위해 수행하고 있는 인공위성과 정보통신, 공간정보 활용기술과 관련된 최신 연구성과와 재난사고 원인·피해조사를 위한 자료 수집·처리·분석과 관련된 최신 연구성과를 담았다. 아울러, 드론매핑(drone mapping)과 라이다(LiDAR) 관측기술을 활용한 2023년 집중호우로 인한 산사태 피해 현장조사 사례를 기술하였다.
식량수급을 이해하기 위한 농업 현황 정보가 부족한 북한을 대상으로 위성영상과 기후자료를 이용하여 객관적이고 재현 가능한 벼 수량을 추정하는 방법을 개발하는 것을 본 연구의 목적으로 하였다. 2002년부터 2014년까지의 MODIS 위성 식생지수 평균 NDVI 최대값과 27개 관측지점의 9월 강수량 자료를 이용하여 북한의 벼 수량 값을 추정하였다. 모형의 결정계수는 0.44, RMSE는 0.27 ton/ha로 다소 크게 나타났고, 분산분석결과 F비가 3.0983, 유의확률이 0.1008을 보였다. 벼논 지역의 MODIS 평균 NDVI 최대값과 등숙기의 기후자료를 이용하여 추정한 북한의 벼 수량은 2007년이 2.71 ton/ha로 가장 낮게, 2006년이 3.54 ton/ha로 가장 높게 나타났다. 통계 값과 추정 값의 산점도를 통하여 비교한 결과 벼 수량이 약 3.3 ton/ha 보다 적을 때는 모형의 추정 값이 높고 그 이상일 때는 통계 값이 더 높게 나타나는 경향이었다. 모형의 종속변수와 독립변수로 사용되는 위성영상의 품질, 단일 시기의 벼논 마스크 영상, 기상 관측지점의 수와 자료의 품질, 통계 값의 품질 등으로 벼 수량에 대한 추정 성능의 한계가 있지만 객관적 자료를 사용하여 재현 가능한 방법을 제시하였다는 의미를 가진다. 모형 구동을 위해 사용되는 자료의 품질을 높여 나가야 하는 과제를 안고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.