• Title/Summary/Keyword: Satellite dynamic model

Search Result 97, Processing Time 0.027 seconds

A Study on the Rainfall-Runoff Analysis of Using Satellite Image (위성영상정보를 이용한 강우유출 해석에 관한 연구)

  • Park, Young-Kee;Lee, Jeung-Seok;Park, Jeong-Gyu
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.115-124
    • /
    • 2010
  • Urban watershed can be found in the visible changes in technology, the most realistic satellite images is to use the data. Satellite image data on the indicators for progress on the nature of the change of land use is consistent and repetitive information, regular observation makes possible the detailed analysis of space-time. These remote sensing techniques and the type of course and, by using the time series history, the past, the dynamic model and the randomized prediction methodology for the conversion process if the city and river basin cooperation of the space changes effectively will be able to extrapolate. For each of the main changes in river flow, depending on the area of urbanization as determined according to reproduce the duration of the relationship between the urbanization of the area and runoff can be represented as a linear polynomial expression was, if a linear expression in the two fast slew rate of 0.858 to 0.861 showed up, and fast slew rate of 0.934 to 0.974 for the polynomial are reported. Change of land use changes in the watershed of the flow is one of the most affecting elements. Therefore, changes in land use of the correct classification of rivers is a more accurate calculation of the amount of the floodgate. In particular, using the Landsat images through the image of the land use category, land use past data and calculated using the Markov Chain model and predict the future land use plan in the water control project will be used for large likely.

The Design/Analysis of High Resolution LEO EO Satellite STM (지구저궤도 고정밀 관측위성 구조 및 열 개발모델 설계/해석)

  • Kim, Jin-Hee;Kim, Kyung-Won;Lee, Ju-Hun;Jin, Ik-Min;Youn, Kil-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.99-104
    • /
    • 2005
  • The major role of a spacecraft structure is to keep and support the spacecraft safely in all the launch environment, on-orbit condition and during ground-transportation and handling. In a satellite development, a structural and thermal model (STM) is developed for two goals ; demonstration of a structural and a thermal stability. In the structure point of view, STM is used to verify the static/dynamic characteristics of structure in the initial stage of development. In this paper, the structure design/analysis of high resolution LEO earth observation satellite STM is described. Also, a low level sine vibration test is performed and compared to the results of finite element analysis.

A Numerical Modeling Study on the Interannual Variability in the Gulf of Alaska (알라스카 만의 경년변화에 대한 수치모형 실험)

  • Bang, In-Kweon;Zygmunt Kowlik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.298-308
    • /
    • 1994
  • Ocean circulation in the Northeast Pacific Ocean is simulated using a high-resolution primitive equation numerical model with realistic bottom topography. The goal is to explain better the details of observed interannual variability of the circulation in the Gulf of Alaska. Our numerical model suggests that there is no seasonal shift in the Alaska gyre and that the interannual variability. reported earlier, is most likely the result of embedded mesoscale eddies in the dynamic topography. Such eddies have been observed in hydrographic. satellite-tracked drifters and altimeter data from the Gulf of Alaska.

  • PDF

THE ORBIT DETERMINATION OF LEO SATELLITES USING EXTENDED KALMAN FILTER (확장 칼만 필터를 이용한 LEO 위성의 궤도결정 방법)

  • 손건호;김광렬;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.133-142
    • /
    • 1995
  • We studied the nonlinear estimation problem of extended Kalman filter and appled this method to LEO satellite system. Through this method the performance of extended Kalman filter was analyzed. There were certain presumption taken; J2 and atmospheric drag were simply considered in the dynamic model of LEO satellite and the system noise error of $\sigma_r$=150m, $\sigma_r$=10m/s was presumed in the observation data. As results of this simulation, the overall state estimation errors of extended Kalman filter were within the presumed error range and also the ability of performance was maximized when the condition was the state process noise Q has the 1/10 level of covariance matrix Po.

  • PDF

Dynamic Models of Hemispherical Resonator Gyros and Tests of Basic Control Characteristics (반구형 공진 자이로의 동작모델과 기초 제어특성 실험)

  • Jin, Jaehyun;Choi, Hong-Taek;Yoon, Hyungjoo;Kim, Dongguk;Sarapulov, Sergii
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.947-954
    • /
    • 2013
  • This article focuses on a hemispherical resonator gyro driven by the Coriolis effect. The operational principle of resonator gyros and mathematical models are introduced. These models are useful to explain the behavior of a resonator and to design controllers. Several control tests of a resonator have been done. A resonator has been excited by electromagnets controlled by a computer. Its amplitude has been adjusted by a PI control. The transient response is matched with a simulation result based on a mathematical model. A vibrating pattern may drift due to non-uniform factors of a resonator. The drift of the vibrating pattern is controlled and aligned to a reference direction by a PI control. These results are very useful to understand the behavior of resonator gyros and to design advanced control algorithm for better performance.

Optimal Design of a Composite Solar Panel for Vibration Suppression (진동 저감을 위한 복합재료 태양전지판의 최적설계)

  • Kim, Yongha;Kim, Hiyeop;Park, Jungsun
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.6
    • /
    • pp.50-57
    • /
    • 2018
  • This paper proposes the use of supports as passive vibration absorber to a composite solar panel for a high-agility satellite. We further defined the dynamic model of the composite solar panel with the help of the Ritz method and verified vibration suppression performance of the support by performing vibration analysis. Finally, this research ensures optimal design of the composite solar panel with the support for maximizing vibration suppression performance in limited mass. The proposed results of the optimal design can be applied in actual structural design of satellites.

Performance Comparison of the Batch Filter Based on the Unscented Transformation and Other Batch Filters for Satellite Orbit Determination (인공위성 궤도결정을 위한 Unscented 변환 기반의 배치필터와 다른 배치필터들과의 성능비교)

  • Park, Eun-Seo;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.75-88
    • /
    • 2009
  • The main purpose of the current research is to introduce the alternative algorithm of the non-recursive batch filter based on the unscented transformation in which the linearization process is unnecessary. The presented algorithm is applied to the orbit determination of a low earth orbiting satellite and compared its results with those of the well-known Bayesian batch least squares estimation and the iterative UKF smoother (IUKS). The system dynamic equations consist of the Earth's geo-potential, the atmospheric drag, solar radiation pressure and the lunar/solar gravitational perturbations. The range, azimuth and elevation angles of the satellite measured from ground stations are used for orbit determination. The characteristics of the non recursive unscented batch filter are analyzed for various aspects, including accuracy of the determined orbit, sensitivity to the initial uncertainty, measurement noise and stability performance in a realistic dynamic system and measurement model. As a result, under large non-linear conditions, the presented non-recursive batch filter yields more accurate results than the other batch filters about 5% for initial uncertainty test and 12% for measurement noise test. Moreover, the presented filter exhibits better convergence reliability than the Bayesian least squares. Hence, it is concluded that the non-recursive batch filter based on the unscented transformation is effectively applicable for highly nonlinear batch estimation problems.

Precise Orbit Determination of LEO Satellite Using Dual-Frequency GPS Data (이중 주파수 GPS 데이터를 이용한 저궤도 위성의 정밀궤도결정)

  • Hwang, Yoo-La;Lee, Byoung-Sun;Kim, Jae-Hoon;Yoon, Jae-Cheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.229-236
    • /
    • 2009
  • KOorea Multi-purpose SATellite(KOMPSAT)-5 will be launched at 550km altitude in 2010. Accurate satellite position(20 cm) and velocity(0.03 cm/s) are required to treat highly precise Synthetic Aperture Radar(SAR) image processing. Ionosphere delay was eliminated using dual frequency GPS data and double differenced GPS measurement removed common clock errors of both GPS satellites and receiver. SAC-C carrier phase data with 0.1 Hz sampling rate was used to achieve precise orbit determination(POD) with ETRI GNSS Precise Orbit Determination(EGPOD) software, which was developed by ETRI. Dynamic model approach was used and satellite's position, velocity, and the coefficients of solar radiation pressure and drag were adjusted once per arc using Batch Least Square Estimator(BLSE) filter. Empirical accelerations for sinusoidal radial, along-track, and cross track terms were also estimated once per revolution for unmodeled dynamics. Additionally piece-wise constant acceleration for cross-track direction was estimated once per arc. The performance of POD was validated by comparing with JPL's Precise Orbit Ephemeris(POE).

The Optimization of One-way Car-Sharing Service by Dynamic Relocation : Based on PSO Algorithm (실시간 재배치를 통한 카쉐어링 서비스 최적화에 관한 연구 : PSO 방법론 기반으로)

  • Lee, Kun-Young;Lee, Hyung-Seok;Hong, Wyo-Han;Ko, Sung-Seok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.2
    • /
    • pp.28-36
    • /
    • 2016
  • Recently, owing to the development of ICT industry and wide spread of smart phone, the number of people who use car sharing service are increased rapidly. Currently two-way car sharing system with same rental and return locations are mainly operated since this system can be easily implemented and maintained. Currently the demand of one-way car sharing service has increase explosively. But this system have several obstacle in operation, especially, vehicle stock imbalance issues which invoke vehicle relocation. Hence in this study, we present an optimization approach to depot location and relocation policy in one-way car sharing systems. At first, we modelled as mixed-integer programming models whose objective is to maximize the profits of a car sharing organization considering all the revenues and costs involved and several constraints of relocation policy. And to solve this problem efficiently, we proposed a new method based on particle swarm optimization, which is one of powerful meta-heuristic method. The practical usefulness of the approach is illustrated with a case study involving satellite cities in Seoul Metrolitan Area including several candidate area where this kind systems have not been installed yet and already operating area. Our proposed approach produced plausible solutions with rapid computational time and a little deviation from optimal solution obtained by CPLEX Optimizer. Also we can find that particle swarm optimization method can be used as efficient method with various constraints. Hence based on this results, we can grasp a clear insight into the impact of depot location and relocation policy schemes on the profitability of such systems.

Engineering Model Design and Implementation of Mass Memory Unit for STSAT-2 (과학기술위성 2호 대용량 메모리 유닛 시험모델 설계 및 구현)

  • Seo, In-Ho;Ryu, Chang-Wan;Nam, Myeong-Ryong;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.115-120
    • /
    • 2005
  • This paper describes the design and implementation of engineering model(EM) of Mass Memory Unit(MMU) for Science and Technology Satellite 2(STSAT-2) and the results of integration test. The use of Field-Programmable Gate Array(FPGA) instead of using private electric parts makes a miniaturization and lightweight of MMU possible. 2Gbits Synchronous Dynamic Random Access Memory(SDRAM) module for mass memory is used to store payload and satellite status data. Moreover, file system is applied to manage them easily in the ground station. RS(207,187) code improves the tolerance with respect to Single Event Upset(SEU) induced in SDRAM. The simulator is manufactured to verify receiving performance of payload data.