• 제목/요약/키워드: Satellite derived precipitation

검색결과 41건 처리시간 0.03초

Bias Correction of Satellite-Based Precipitation Using Convolutional Neural Network

  • Le, Xuan-Hien;Lee, Gi Ha
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.120-120
    • /
    • 2020
  • Spatial precipitation data is one of the essential components in modeling hydrological problems. The estimation of these data has achieved significant achievements own to the recent advances in remote sensing technology. However, there are still gaps between the satellite-derived rainfall data and observed data due to the significant dependence of rainfall on spatial and temporal characteristics. An effective approach based on the Convolutional Neural Network (CNN) model to correct the satellite-derived rainfall data is proposed in this study. The Mekong River basin, one of the largest river system in the world, was selected as a case study. The two gridded precipitation data sets with a spatial resolution of 0.25 degrees used in the CNN model are APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) and PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks). In particular, PERSIANN-CDR data is exploited as satellite-based precipitation data and APHRODITE data is considered as observed rainfall data. In addition to developing a CNN model to correct the satellite-based rain data, another statistical method based on standard deviations for precipitation bias correction was also mentioned in this study. Estimated results indicate that the CNN model illustrates better performance both in spatial and temporal correlation when compared to the standard deviation method. The finding of this study indicated that the CNN model could produce reliable estimates for the gridded precipitation bias correction problem.

  • PDF

한반도의 CMORPH 위성강수자료 정확도 평가 (Fitness Evaluation of CMORPH Satellite-derived Precipitation Data in KOREA)

  • 김주훈;김경탁;최윤석
    • 한국습지학회지
    • /
    • 제15권3호
    • /
    • pp.339-346
    • /
    • 2013
  • 본 연구에서는 NOAA CPC에서 제공하고 있는 인공위성을 이용한 광역적 강수량 추정 자료인 CMORPH와 지상 관측자료와의 비교를 통해 위성으로부터 유도된 강수자료의 정확도 및 활용 가능성 등 수자원 분야 이용 가능성을 분석하는 것을 목적으로 하였다. 2002-2011년의 10년간의 자료를 분석한 결과 1일 누가강수의 상관계수가 평균 0.87 정도로 분석되었으나, 연간 총강수량은 약 4~5배 정도 차이가 나는 것으로 분석되었다. 또한 시간해상도가 커짐에 따라 RMSE의 변동성이 작아지는 것으로 분석되었다. 유역 규모에 따른 분석에서 유역 규모가 커질수록 강수자료의 정확도에 대한 평가가 향상되는 것으로 분석되었다.

Analysis of bias correction performance of satellite-derived precipitation products by deep learning model

  • Le, Xuan-Hien;Nguyen, Giang V.;Jung, Sungho;Lee, Giha
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.148-148
    • /
    • 2022
  • Spatiotemporal precipitation data is one of the primary quantities in hydrological as well as climatological studies. Despite the fact that the estimation of these data has made considerable progress owing to advances in remote sensing, the discrepancy between satellite-derived precipitation product (SPP) data and observed data is still remarkable. This study aims to propose an effective deep learning model (DLM) for bias correction of SPPs. In which TRMM (The Tropical Rainfall Measuring Mission), CMORPH (CPC Morphing technique), and PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) are three SPPs with a spatial resolution of 0.25o exploited for bias correction, and APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) data is used as a benchmark to evaluate the effectiveness of DLM. We selected the Mekong River Basin as a case study area because it is one of the largest watersheds in the world and spans many countries. The adjusted dataset has demonstrated an impressive performance of DLM in bias correction of SPPs in terms of both spatial and temporal evaluation. The findings of this study indicate that DLM can generate reliable estimates for the gridded satellite-based precipitation bias correction.

  • PDF

위성기반 Climate Hazards Group InfraRed Precipitation with Station (CHIRPS)를 활용한 한반도 지역의 기상학적 가뭄지수 적용 (Application of Meteorological Drought Index using Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) Based on Global Satellite-Assisted Precipitation Products in Korea)

  • 문영식;남원호;전민기;김태곤;홍은미
    • 한국농공학회논문집
    • /
    • 제61권2호
    • /
    • pp.1-11
    • /
    • 2019
  • Remote sensing products have long been used to monitor and forecast natural disasters. Satellite-derived rainfall products are becoming more accurate as space and time resolution improve, and are widely used in areas where measurement is difficult because of the periodic accumulation of images in large areas. In the case of North Korea, there is a limit to the estimation of precipitation for unmeasured areas due to the limited accessibility and quality of statistical data. CHIRPS (Climate Hazards Group InfraRed Precipitation with Stations) is global satellite-derived rainfall data of 0.05 degree grid resolution. It has been available since 1981 from USAID (U.S. Agency for International Development), NASA (National Aeronautics and Space Administration), NOAA (National Oceanic and Atmospheric Administration). This study evaluates the applicability of CHIRPS rainfall products for South Korea and North Korea by comparing CHIRPS data with ground observation data, and analyzing temporal and spatial drought trends using the Standardized Precipitation Index (SPI), a meteorological drought index available through CHIRPS. The results indicate that the data set performed well in assessing drought years (1994, 2000, 2015 and 2017). Overall, this study concludes that CHIRPS is a valuable tool for using data to estimate precipitation and drought monitoring in Korea.

다중 위성영상 기반 강우자료를 활용한 동아시아 지역의 기상학적 가뭄지수 비교 분석 (Evaluation and Comparison of Meteorological Drought Index using Multi-satellite Based Precipitation Products in East Asia)

  • 문영식;남원호;김태곤;홍은미;서찬양
    • 한국농공학회논문집
    • /
    • 제62권1호
    • /
    • pp.83-93
    • /
    • 2020
  • East Asia, which includes China, Japan, Korea, and Mongolia, is highly impacted by hydroclimate extremes such drought, flood, and typhoon recent year. In 2017, more than 18.5 million hectares of crops have been damaged in China, and Korea has suffered economic losses as a result of severe drought. Satellite-derived rainfall products are becoming more accurate as space and time resolution become increasingly higher, and provide an alternative means of estimating ground-based rainfall. In this study, we verified the availability of rainfall products by comparing widely used satellite images such as Climate Hazards Groups InfraRed Precipitation with Station (CHIRPS), Global Precipitation Climatology Centre (GPCC), and Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) with ground stations in East Asia. Also, the satellite-based rainfall products were used to calculate the Standardized Precipitation Index (SPI). The temporal resolution is based on monthly images and compared with the past 30 years data from 1989 to 2018. The comparison between rainfall data based on each satellite image products and the data from weather station-based weather data was shown by the coefficient of determination and showed more than 0.9. Each satellite-based rainfall data was used for each grid and applied to East Asia and South Korea. As a result of SPI analysis, the RMSE values of CHIRPS were 0.57, 0.53 and 0.47, and the MAE values of 0.46, 0.43 and 0.37 were better than other satellite products. This satellite-derived rainfall estimates offers important advantages in terms of spatial coverage, timeliness and cost efficiency compared to analysis for drought assessment with ground stations.

The Impacts of Climate Variability on Household Consumption: Evidence Based on Village Weather Data in Indonesia

  • Pratiwi Ira Eka;Bokyeong Park
    • East Asian Economic Review
    • /
    • 제27권4호
    • /
    • pp.273-301
    • /
    • 2023
  • This study investigates the impacts of long-term climate variability on household consumption in Indonesia, a country highly vulnerable to climate change. The analysis combines household survey data from nearly 5,998 families with satellite-derived weather data from NASA POWER spanning 30 years. We use the long-term variability in temperature and precipitation as a proxy for climate change. This study examines the impact of climate change which proceeds over the long term, unlike previous studies concerning one-off or short-term climate events. In addition, using satellite data enhances the accuracy of households' exposure to climate variability. The analysis finds that households in a village with higher temperature and precipitation variability significantly consume less food. This implies that households more exposed to climate change are at higher risk of malnutrition in developing countries. This study has a limitation that it cannot rule out the potential endogeneity of choosing a climate-vulnerable residential location due to economic poorness.

영동 대설과 관련된 낮은 층운형 구름의 위성관측 (Satellite Image Analysis of Low-Level Stratiform Cloud Related with the Heavy Snowfall Events in the Yeongdong Region)

  • 권태영;박준영;최병철;한상옥
    • 대기
    • /
    • 제25권4호
    • /
    • pp.577-589
    • /
    • 2015
  • An unusual long-period and heavy snowfall occurred in the Yeongdong region from 6 to 14 February 2014. This event produced snowfall total of 194.8 cm and the recordbreaking 9-day snowfall duration in the 103-year local record at Gangneung. In this study, satellite-derived cloud-top brightness temperatures from the infrared channel in the atmospheric window ($10{\mu}m{\sim}11{\mu}m$) are examined to find out the characteristics of clouds related with this heavy snowfall event. The analysis results reveal that a majority of precipitation is related with the low-level stratiform clouds whose cloud-top brightness temperatures are distributed from -15 to $-20^{\circ}C$ and their standard deviations over the analysis domain (${\sim}1,000km^2$, 37 satellite pixels) are less than $2^{\circ}C$. It is also found that in the above temperature range precipitation intensity tends to increase with colder temperature. When the temperatures are warmer than $-15^{\circ}C$, there is no precipitation or light precipitation. Furthermore this relation is confirmed from the examination of some other heavy snowfall events and light precipitation events which are related with the low-level stratiform clouds. This precipitation-brightness temperature relation may be explained by the combined effect of ice crystal growth processes: the maximum in dendritic ice-crystal growth occurs at about $-15^{\circ}C$ and the activation of ice nuclei begins below temperatures from approximately -7 to $-16^{\circ}C$, depending on the composition of the ice nuclei.

Backward estimation of precipitation from high spatial resolution SAR Sentinel-1 soil moisture: a case study for central South Korea

  • Nguyen, Hoang Hai;Han, Byungjoo;Oh, Yeontaek;Jung, Woosung;Shin, Daeyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.329-329
    • /
    • 2022
  • Accurate characterization of terrestrial precipitation variation from high spatial resolution satellite sensors is beneficial for urban hydrology and microscale agriculture modeling, as well as natural disasters (e.g., urban flooding) early warning. However, the widely-used top-down approach for precipitation retrieval from microwave satellites is limited in several hydrological and agricultural applications due to their coarse spatial resolution. In this research, we aim to apply a novel bottom-up method, the parameterized SM2RAIN, where precipitation can be estimated from soil moisture signals based on an inversion of water balance model, to generate high spatial resolution terrestrial precipitation estimates at 0.01º grid (roughly 1-km) from the C-band SAR Sentinel-1. This product was then tested against a common reanalysis-based precipitation data and a domestic rain gauge network from the Korean Meteorological Administration (KMA) over central South Korea, since a clear difference between climatic types (coasts and mainlands) and land covers (croplands and mixed forests) was reported in this area. The results showed that seasonal precipitation variability strongly affected the SM2RAIN performances, and the product derived from separated parameters (rainy and non-rainy seasons) outperformed that estimated considering the entire year. In addition, the product retrieved over the mainland mixed forest region showed slightly superior performance compared to that over the coastal cropland region, suggesting that the 6-day time resolution of S1 data is suitable for capturing the stable precipitation pattern in mainland mixed forests rather than the highly variable precipitation pattern in coastal croplands. Future studies suggest comparing this product to the traditional top-down products, as well as evaluating their integration for enhancing high spatial resolution precipitation over entire South Korea.

  • PDF

The variation and distribution of snow cover in China

  • Yujie, Liu;Zhaojun, Zheng;Ruixia, Liu
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1292-1294
    • /
    • 2003
  • This paper presents the results of research and analysis with the satellite-derived snow data. It provides the main climatic characteristics of snow cover in China and shows the variation and distribution of snow in regions of Xinjiang, Inter Mongolia and Tibet plateau. The study reveals the vicissitude periods of winter snow cover in Tibetan Plateau by using wavelet analysis with the data from 1980 to 2001. It has about 10 years large period and 3-5 years small period. The analysis shows that the extension of snow increased in recent years in Xinjiang. The results of analysis proves the relationship between winter snow cover in Tibetan Plateau and next summer precipitation in the middle and lower reaches of the Yangtze River. They have good correlation.

  • PDF

Effect of Hydro-meteorological and Surface Conditions on Variations in the Frequency of Asian Dust Events

  • Ryu, Jae-Hyun;Hong, Sungwook;Lyu, Sang Jin;Chung, Chu-Yong;Shi, Inchul;Cho, Jaeil
    • 대한원격탐사학회지
    • /
    • 제34권1호
    • /
    • pp.25-43
    • /
    • 2018
  • The effects of hydro-meteorological and surface variables on the frequency of Asian dust events (FAE) were investigated using ground station and satellite-based data. Present weather codes 7, 8, and 9 derived from surface synoptic observations (SYNOP)were used for counting FAE. Surface wind speed (SWS), air temperature (Ta), relative humidity (RH), and precipitation were analyzed as hydro-meteorological variables for FAE. The Normalized Difference Vegetation Index (NDVI), land surface temperature (LST), and snow cover fraction (SCF) were used to consider the effects of surface variables on FAE. The relationships between FAE and hydro-meteorological variables were analyzed using Z-score and empirical orthogonal function (EOF) analysis. Although all variables expressed the change of FAE, the degrees of expression were different. SWS, LST, and Ta (indices applicable when Z-score was < 0) explained about 63.01, 58.00, and 56.17% of the FAE,respectively. For NDVI, precipitation, and RH, Asian dust events occurred with a frequency of about 55.38, 67.37, and 62.87% when the Z-scores were > 0. EOF analysis for the FAE showed the seasonal cycle, change pattern, and surface influences related to dryness condition for the FAE. The intensity of SWS was the main cause for change of FAE, but surface variables such as LST, SCF, and NDVI also were expressed because wet surface conditions suppress FAE. These results demonstrate that not only SWS and precipitation, but also surface variables, are important and useful precursors for monitoring Asian dust events.