• Title/Summary/Keyword: Satellite assimilation

Search Result 70, Processing Time 0.028 seconds

Errors of MODIS product of Gross Primary Production by using Data Assimilation Office Meteorological Data (MODIS 총일차생산성 산출물의 오차요인 분석: 입력기상자료의 영향)

  • Kang Sinkyu;Kim Youngil;Kim Youngjin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.2
    • /
    • pp.171-183
    • /
    • 2005
  • In order to monitor the global terrestrial carbon cycle, NASA (National Aeronautics and Space Administration) provides 8-day GPP images by use of satellite remote-sensing reflectance data from MODIS (Moderate Resolution Imaging Spectroradiometer) at l-km nadir spatial resolution since December, 1999. MODIS GPP algorithm adopts DAO (Data Assimilation Office) meteorological data to calculate daily GPP. By evaluating reliability of DAO data with respect to surface weather station data, we examined the effect of errors from DAO data on MODIS GPP estimation in the Korean Peninsula from 2001 to 2003. Our analyses showed that DAO data underestimated daily average temperature, daily minimum temperature, and daily vapor pressure deficity (VPD), but overestimated daily shortwave radiation during the study period. Each meteorological variable resulted in different spatial patterns of error distribution across the Korean Peninsula. In MODIS GPP estimation, DAO data resulted in overestimation of GPP by $25\%$ for all biome types but up to $40\%$ for forest biomes, the major biome type in the Korean Peninsula. MODIS GPP was more sensitive to errors in solar radiation and VPD than in temperatures. Our results indicate that more reliable gridded meteorological data than DAO data are necessary for satisfactory estimation of MODIS GPP in the Korean Peninsula.

Data Assimilation of Aeolus/ALADIN Horizontal Line-Of-Sight Wind in the Korean Integrated Model Forecast System (KIM 예보시스템에서의 Aeolus/ALADIN 수평시선 바람 자료동화)

  • Lee, Sihye;Kwon, In-Hyuk;Kang, Jeon-Ho;Chun, Hyoung-Wook;Seol, Kyung-Hee;Jeong, Han-Byeol;Kim, Won-Ho
    • Atmosphere
    • /
    • v.32 no.1
    • /
    • pp.27-37
    • /
    • 2022
  • The Korean Integrated Model (KIM) forecast system was extended to assimilate Horizontal Line-Of-Sight (HLOS) wind observations from the Atmospheric Laser Doppler Instrument (ALADIN) on board the Atmospheric Dynamic Mission (ADM)-Aeolus satellite. Quality control procedures were developed to assess the HLOS wind data quality, and observation operators added to the KIM three-dimensional variational data assimilation system to support the new observed variables. In a global cycling experiment, assimilation of ALADIN observations led to reductions in average root-mean-square error of 2.1% and 1.3% for the zonal and meridional wind analyses when compared against European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) analyses. Even though the observable variable is wind, the assimilation of ALADIN observation had an overall positive impact on the analyses of other variables, such as temperature and specific humidity. As a result, the KIM 72-hour wind forecast fields were improved in the Southern Hemisphere poleward of 30 degrees.

Impacts of OSTIA Sea Surface Temperature in Regional Ocean Data Assimilation System (지역 해양순환예측시스템에 대한 OSTIA 해수면온도 자료동화 효과에 관한 연구)

  • Kim, Ji Hye;Eom, Hyun-Min;Choi, Jong-Kuk;Lee, Sang-Min;Kim, Young-Ho;Chang, Pil-Hun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • Impacts of Sea Surface Temperature (SST) assimilation to the prediction of upper ocean temperature is investigated by using a regional ocean forecasting system, in which 3-dimensional optimal interpolation is applied. In the present study, Sea Surface Temperature and Sea Ice Analysis (OSTIA) dataset is adopted for the daily SST assimilation. This study mainly compares two experimental results with (Exp. DA) and without data assimilation (Exp. NoDA). When comparing both results with OSTIA SST data during Sept. 2011, Exp. NoDA shows Root Mean Square Error (RMSE) of about $1.5^{\circ}C$ at 24, 48, 72 forecast hour. On the other hand, Exp. DA yields the relatively lower RMSE of below $0.8^{\circ}C$ at all forecast hour. In particular, RMSE from Exp. DA reaches $0.57^{\circ}C$ at 24 forecast hour, indicating that the assimilation of daily SST (i.e., OSTIA) improves the performance in the early SST prediction. Furthermore, reduction ratio of RMSE in the Exp. DA reaches over 60% in the Yellow and East seas. In order to examine impacts in the shallow costal region, the SST measured by eight moored buoys around Korean peninsula is compared with both experiments. Exp. DA reveals reduction ratio of RMSE over 70% in all season except for summer, showing the contribution of OSTIA assimilation to the short-range prediction in the coastal region. In addition, the effect of SST assimilation in the upper ocean temperature is examined by the comparison with Argo data in the East Sea. The comparison shows that RMSE from Exp. DA is reduced by $1.5^{\circ}C$ up to 100 m depth in winter where vertical mixing is strong. Thus, SST assimilation is found to be efficient also in the upper ocean prediction. However, the temperature below the mixed layer in winter reveals larger difference in Exp. DA, implying that SST assimilation has still a limitation to the prediction of ocean interior.

Effects Study on the Accuracy of Photochemical Modeling to MM5 Four Dimensional Data Assimilation Using Satellite Data (위성자료를 이용한 MM5 4차원자료동화가 광화학모델의 정확도에 미치는 영향 고찰)

  • Lee, Chong-Bum;Kim, Jea-Chul;Cheon, Tae-Hun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.4
    • /
    • pp.264-274
    • /
    • 2009
  • Concentration of Air Quality Models (CMAQ) has a deep connection with emissions and wind fields. In particular the wind field is highly affected by local topography and plays an important role in transport and dispersion of contaminants from the pollution sources. The purpose of this study is to examine the impact of interpolation on Air quality model. This study was designed to evaluate enhancement of MM5 and CMAQ predictions by using Four Dimensional Data Assimilation (FDDA), the SONDE data and the national meteorological station and the MODerate resolution Imaging Spectroradiometer (MODIS). The alternative meteorological fields predicted with and without MODIS data were used to simulate spatial and temporal variations of ozone in combined with CMAQ on June 2006. The result of this study indicated that data assimilation using MODIS data provided an attractive method for generating realistic meteorological fields and dispersion fields of ozone in the Korea peninsular, because MODIS data in 10 km domain are grid horizontally and vertically. In order to ensure the success of Air quality model, it is necessary to FDDA using MODIS data.

Validation of Significant Wave Height from Satellite Altimeter in the Seas around Korea and Error Characteristics

  • Park, Kyung-Ae;Woo, Hye-Jin;Lee, Eun-Young;Hong, Sungwook;Kim, Kum-Lan
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.6
    • /
    • pp.631-644
    • /
    • 2013
  • Significant Wave Height (SWH) data measured by satellite altimeters (Topex/Poseidon, Jason-1, Envisat, and Jason-2) were validated in the seas around Korea by comparison with wave height measurements from marine meteorological buoy stations of Korea Meteorological Administration (KMA). A total of 1,070 collocation matchups between Ku-band satellite altimeter data and buoy data were obtained for the periods of the four satellites from 1992 to the present. In the case of C-band and S-band observations, 1,086 matchups were obtained and used to assess the accuracy of satellite SWH. Root-Mean-Square (RMS) errors of satellite SWH measured with Ku-band were evaluated to roughly 0.2_2.1 m. Comparisons of the RMS errors and bias errors between different frequency bands revealed that SWH observed with Ku-band was much more accurate than other frequencies, such as C-band or S-band. The differences between satellite SWH and buoy wave height, satellite minus buoy, revealed some dependence on the magnitude of the wave height. Satellite SWH tended to be overestimated at a range of low wave height of less than 1 m, and underestimated for high wave height of greater than 2 m. Such regional characteristics imply that satellite SWH should be carefully used when employed for diverse purposes such as validating wave model results or data assimilation procedures. Thus, this study confirmed that satellite SWH products should be continuously validated for regional applications.

Temporal and Spatial Distributions of the Surface Solar Radiation by Spatial Resolutions on Korea Peninsula (한반도에서 해상도 변화에 따른 지표면 일사량의 시공간 분포)

  • Lee, Kyu-Tae;Zo, Il-Sung;Jee, Joon-Bum;Choi, Young-Jean
    • New & Renewable Energy
    • /
    • v.7 no.1
    • /
    • pp.22-28
    • /
    • 2011
  • The surface solar radiations were calculated and analyzed with spatial resolutions (4 km and 1 km) using by GWNU (Gangneung-Wonju National University) solar radiation model. The GWNU solar radiation model is used various data such as aerosol optical thickness, ozone amount, total precipitable water and cloud factor are retrieved from Moderate Resolution Imaging Spectrometer (MODIS), Ozone Monitoring Instrument (OMI), MTSAT-1R satellite data and output of the Regional Data Assimilation Prediction System(RDAPS) model by Korea Meteorological Administration (KMA), respectively. The differences of spatial resolutions were analyzed with input data (especially, cloud factor from MTSAT-1R satellite). And the Maximum solar radiation by GWNU model were found in Andong, Daegu and Jinju regions and these results were corresponded with the MTSAT-1R cloud factor.

Estimation of the optimal evapotranspiration by using satellite- and reanalysis model-based evapotranspiration estimations (인공위성과 재분석모델 자료의 다중 증발산 자료를 활용하여 최적 증발산 산정 연구)

  • Baik, Jongjin;Jeong, Jaehwan;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.3
    • /
    • pp.273-280
    • /
    • 2018
  • Accurate estimation of evapotranspiration is mightily important for understanding and analyzing the hydrological cycle. There are various methods for estimating evapotranspiration and each method has its own advantages and limitations. Therefore, it is necessary to develop an optimal evapotranspiration product by combing different evapotranspiration products. In this study, we developed an optimal evapotranspiration by fusing two satellite- and model-based evapotranspiration estimates, including revised remote sensing-based Penman-Monteith (RS-PM) and Modified Satellite-Based Priestley-Taylor (MS-PT) methods, Global Land Data Assimilation System (GLDAS), and Global Land Evaporation Amsterdam Model (GLEAM). The statistical analysis (i.e., correlation coefficients, index of agreement, MAE, and RMSE) of combined evapotranspiration product showed to be improved compared to the individual model results. After confirming the overall results, in future studies, advanced data fusion techniques will be used to obtained improved results.

Air-Sea Heat Flux Estimation by Ocean Data Assimilation Using Satellite and TOGA/TAO Buoy Data

  • Awaji, Toshiyuki;Ishikawa, Yoichi;Iida, Masatora;In, Teiji
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.221-226
    • /
    • 1999
  • A data assimilation system for a 1-dimensional mixed layer model has been constructed using the adjoint method. The classical adjoint method does not work well for the mixed layer variabilities due to the occurrence of spikes in the gradient of the cost function. To solve this problem, the two techniques of scaling the cost function and optimization in the frequency space are used. As a result, the heat flux can be reliably estimated with an accuracy of 8Wm$^{-2}$ rms error in the identical twin experiments. We then applied this system to the tropical Pacific TOGA-TAO buoy data. The air-sea heat flux as well as the mixed layer variability were estimated in close approximation to the buoy data, particularly on time scales longer than the seasonal one.

  • PDF

Bias Characteristics Analysis of Himawari-8/AHI Clear Sky Radiance Using KMA NWP Global Model (기상청 전구 수치예보모델을 활용한 Himawari-8/AHI 청천복사휘도 편차 특성 분석)

  • Kim, Boram;Shin, Inchul;Chung, Chu-Yong;Cheong, Seonghoon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1101-1117
    • /
    • 2018
  • The clear sky radiance (CSR) is one of the baseline products of the Himawari-8 which was launched on October, 2014. The CSR contributes to numerical weather prediction (NWP) accuracy through the data assimilation; especially water vapor channel CSR has good impact on the forecast in high level atmosphere. The focus of this study is the quality analysis of the CSR of the Himawari-8 geostationary satellite. We used the operational CSR (or clear sky brightness temperature) products in JMA (Japan Meteorological Agency) as observation data; for a background field, we employed the CSR simulated using the Radiative Transfer for TOVS (RTTOV) with the atmospheric state from the global model of KMA (Korea Meteorological Administration). We investigated data characteristics and analyzed observation minus background statistics of each channel with respect to regional and seasonal variability. Overall results for the analysis period showed that the water vapor channels (6.2, 6.9, and $7.3{\mu}m$) had a positive mean bias where as the window channels(10.4, 11.2, and $12.4{\mu}m$) had a negative mean bias. The magnitude of biases and Uncertainty result varied with the regional and the seasonal conditions, thus these should be taken into account when using CSR data. This study is helpful for the pre-processing of Himawari-8/Advanced Himawari Imager (AHI) CSR data assimilation. Furthermore, this study also can contribute to preparing for the utilization of products from the Geo-Kompsat-2A (GK-2A), which will be launched in 2018 by the National Meteorological Satellite Center (NMSC) of KMA.

Development of Agricultural Drought Assessment Approach Using SMAP Soil Moisture Footprints (SMAP 토양수분 이미지를 이용한 농업가뭄 평가 기법 개발)

  • Shin, Yongchul;Lee, Taehwa;Kim, Sangwoo;Lee, Hyun-Woo;Choi, Kyung-Sook;Kim, Jonggun;Lee, Giha
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.57-70
    • /
    • 2017
  • In this study, we evaluated daily root zone soil moisture dynamics and agricultural drought using a near-surface soil moisture data assimilation scheme with Soil Moisture Active & Passive (SMAP, $3km{\times}3km$) soil moisture footprints under different hydro-climate conditions. Satellite-based LANDSAT and MODIS image footprints were converted to spatially-distributed soil moisture estimates based on the regression model, and the converted soil moisture distributions were used for assessing uncertainties and applicability of SMAP data at fields. In order to overcome drawbacks of the discontinuity of SMAP data at the spatio-temporal scales, the data assimilation was applied to SMAP for estimating daily soil moisture dynamics at the spatial domain. Then, daily soil moisture values were used to estimate weekly agricultural drought based on the Soil Moisture Deficit Index (SMDI). The Yongdam-dam and Soyan river-dam watersheds were selected for validating our proposed approach. As a results, the MODIS/SMAP soil moisture values were relatively overestimated compared to those of the TDR-based measurements and LANDSAT data. When we applied the data assimilation scheme to SMAP, uncertainties were highly reduced compared to the TDR measurements. The estimated daily root zone soil moisture dynamics and agricultural drought from SMAP showed the variability at the sptio-temporal scales indicating that soil moisture values are influenced by not only the precipitation, but also the land surface characteristics. These findings can be useful for establishing efficient water management plans in hydrology and agricultural drought.