• Title/Summary/Keyword: Satellite altimeter data

Search Result 59, Processing Time 0.028 seconds

Comparison between Ionospheric and plasmaspheric TECs measured from JASON satellite: plasmaspheric flux

  • Lee, Han-Byul;Jee, Geon-Hwa;Kim, Yong-Ha;Chung, Jong-Kyun
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.27.3-27.3
    • /
    • 2011
  • The plasmasphere is filled with the ions and electron transported mostly from the mid-latitude ionosphere. In the topside ionosphere where the $O^+$ ions are still major ions, the $O^+$ ions are in chemical equilibrium with the $H^+$ ions and exchange their charges with each other's parent atoms with similar rates in both reactions. During the day, the newly produced $H^+$ ions flow upward to fill the plasmasphere while they flow downward and contribute to the maintenance of the ionospheric density at night under the geomagnetically quiet condition. The ionosphere and plasmasphere are coupled by these plasma fluxes and therefore strongly affect each other. In order to study these coupling we utilized the plasma density measurements from JASON satellite. This satellite measures vertical total electron content (TEC) from the ground to the satellite orbit (about 1336 km) and slant TEC from the satellite orbit to much higher GPS satellites by using the on-board dual-frequency altimeter and GPS receiver, respectively. The former measurement can represent the ionospheric TEC while the latter can represent the plasmaspheric TEC in the equatorial region. We compared these data with different seasons, solar activities and local times, and the results will be presented.

  • PDF

Characteristics of the Differences between Significant Wave Height at Ieodo Ocean Research Station and Satellite Altimeter-measured Data over a Decade (2004~2016) (이어도 해양과학기지 관측 파고와 인공위성 관측 유의파고 차이의 특성 연구 (2004~2016))

  • WOO, HYE-JIN;PARK, KYUNG-AE;BYUN, DO-SEONG;LEE, JOOYOUNG;LEE, EUNIL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.1
    • /
    • pp.1-19
    • /
    • 2018
  • In order to compare significant wave height (SWH) data from multi-satellites (GFO, Jason-1, Envisat, Jason-2, Cryosat-2, SARAL) and SWH measurements from Ieodo Ocean Research Station (IORS), we constructed a 12 year matchup database between satellite and IORS measurements from December 2004 to May 2016. The satellite SWH showed a root mean square error (RMSE) of about 0.34 m and a positive bias of 0.17 m with respect to the IORS wave height. The satellite data and IORS wave height data did not show any specific seasonal variations or interannual variability, which confirmed the consistency of satellite data. The effect of the wind field on the difference of the SWH data between satellite and IORS was investigated. As a result, a similar result was observed in which a positive biases of about 0.17 m occurred on all satellites. In order to understand the effects of topography and the influence of the construction structures of IORS on the SWH differences, we investigated the directional dependency of differences of wave height, however, no statistically significant characteristics of the differences were revealed. As a result of analyzing the characteristics of the error as a function of the distance between the satellite and the IORS, the biases are almost constant about 0.14 m regardless of the distance. By contrast, the amplitude of the SWH differences, the maximum value minus the minimum value at a given distance range, was found to increase linearly as the distance was increased. On the other hand, as a result of the accuracy evaluation of the satellite SWH from the Donghae marine meteorological buoy of Korea Meteorological Administration, the satellite SWH presented a relatively small RMSE of about 0.27 m and no specific characteristics of bias such as the validation results at IORS. In this paper, we propose a conversion formula to correct the significant wave data of IORS with the satellite SWH data. In addition, this study emphasizes that the reliability of data should be prioritized to be extensively utilized and presents specific methods and strategies in order to upgrade the IORS as an international world-wide marine observation site.

A Gaussian Jet Model for Deriving Absolute Geostrophic Velocity from Satellite Altimetry

  • Kim, Seung-Bum
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.610-614
    • /
    • 2002
  • Time-mean and absolute geostrophic velocities of the Kuroshio current south of Japan are derived from TOPEX/Poseidon altimeter data using a Gaussian jet model. When compared with simultaneous measurements from a shipboard acoustic Doppler current profiler (ADCP) at two intersection points, the altimetric and ADCP absolute velocities correlate well with the correlation of 0.55 to 0.74. The time-mean velocity is accurate to 1 cm s$^{-1}$ to 5 cm s$^{-1}$. The errors in the absolute and the mean velocities are similar to those reported previously far other currents. The comparable performance suggests the Gaussian jet model is a promising methodology for determining absolute geostrophic velocities, noting that in this region the Kuroshio does not meander sufficiently, which provides unfavorable environment for the performance of the Gaussian jet model.

  • PDF

Improved Free-air Gravity Anomalies by Satellite Altimetry

  • Kim, Jeong-Woo;Roman, Daniel-R.
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.4
    • /
    • pp.297-305
    • /
    • 2001
  • Ocean satellite altimetry-implied free-air gravity anomalies have had the shortest wavelengths removed during the processing to generate the optimal solution between multiple radar altimeter missions. ERS-1 168day mission altimetry was residualized to a reference geoid surface generated by integrating Anderson & Knudsen’s free-air gravity anomalies for the Barents Sea. The altimetry tracks were reduced and filtered to extract the shortest wavelengths (between 4 and 111 km) from both ascending and descending tracks, respectively. These data were recombined using existing quadrant-swapping techniques in the wavenumber domain to generate a correlated, high frequency gravity field related to the local geologic sources. This added-value surface adjusted the reference free-air gravity anomalies to better reflect features in the gravity field at a wavelength related to the distance between altimetry ground tracks.

Sea level observations in the Korean seas by remote sensing

  • Yoon, Hong-Joo
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.1
    • /
    • pp.58-60
    • /
    • 2004
  • Sea level variations and sea surface circulations in the Korean seas were observed by Topex/Poseidon altimeter data from 1993 through 1997. In sea level variations, the West and South Sea showed relatively high variations with comparison to the East Sea. Then, the northern and southern area in the West Sea showed the range of 20∼30cm and 18∼24cm, and the northern west of Jeju island and the southern west of Tsushima island in the South Sea showed the range of 15∼20cm and 10∼15cm, respectively. High variations in the West Sea were results to the inflow in sea surface of Yellow Sea Warm Current (YSWC) and bottom topography. Sea level variations in the South Sea were due to two branch currents (Jeju Warm Current and East Korea Warm Current) originated from Kuroshio Current (KC). In sea surface circulations, there existed remarkably three eddies circulations in the East Sea that are mainly connected with North Korea Cold Current (NKCC), East Korea Warm Current (EKWC) and Tushima Warm Current (TWC). Their eddies are caused basically to the influence of currents in sea surface circulations; Cyclone (0.03 cm/see) in the Wonsan bay off shore with NKCC, and anticyclone (0.06 cm/see) in the southwestern area of Ulleung island with EKWC, and cyclone (0.01 cm/see) in the northeastern area of Tushima island with TWC, respectively.

Distortions of Spherical Data in the Wavenumber Domain

  • Kim, Jeong-Woo;Lee, Dong-Cheon
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.3
    • /
    • pp.171-179
    • /
    • 2002
  • Sampling rates become inconsistent when spatial data in the spherical coordinate are resampled with respect to latitudinal or longitudinal degree for mathematical processes such as Fourier Transform, and this results in distortions of the processed data in the wavenumber domain. These distortions are more evident in the polar regions. An example is presented to show such distortions during the recovery process of free-air gravity anomalies from ERS-1 satellite radar altimeter data from the Barents Sea in the Russian Arctic, and a method is presented to minimize the distortion using the Lambert Conformal Conic map projection. This approach was found to enhance the free-air gravity anomalies in both data and wavenumber domains.

Multi-scale Correlation Analysis between Sea Level Anomaly and Climate Index through Wavelet Approach (웨이블릿 접근을 통한 해수면 높이와 기후 지수간의 다중 스케일 상관 관계 분석)

  • Hwang, Do-Hyun;Jung, Hahn Chul
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.587-596
    • /
    • 2022
  • Sea levels are rising as a result of climate change, and low-lying areas along the coast are at risk of flooding. Therefore, we tried to investigate the relationship between sea level change and climate indices using satellite altimeter data (Topex/Poseidon, Jason-1/2/3) and southern oscillation index (SOI) and the Pacific decadal oscillation (PDO) data. If time domain data were converted to frequency domain, the original data can be analyzed in terms of the periodic components. Fourier transform and Wavelet transform are representative periodic analysis methods. Fourier transform can provide only the periodic signals, whereas wavelet transform can obtain both the periodic signals and their corresponding time location. The cross-wavelet transformation and the wavelet coherence are ideal for analyzing the common periods, correlation and phase difference for two time domain datasets. Our cross-wavelet transform analysis shows that two climate indices (SOI, PDO) and sea level height was a significant in 1-year period. PDO and sea level height were anti-phase. Also, our wavelet coherence analysis reveals when sea level height and climate indices were correlated in short (less than one year) and long periods, which did not appear in the cross wavelet transform. The two wavelet analyses provide the frequency domains of two different time domain datasets but also characterize the periodic components and relative phase difference. Therefore, our research results demonstrates that the wavelet analyses are useful to analyze the periodic component of climatic data and monitor the various oceanic phenomena that are difficult to find in time series analysis.

On characteristics of environmental correction factors in the South Indian Ocean by Topex/Poseidon satellite altimetric data (Topex/Poseidon 위성의 Altimeter자료를 이용한 남인도양의 환경보정인자 특성에 관한 연구)

  • 윤홍주;김영섭;이재철
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.2
    • /
    • pp.117-128
    • /
    • 1998
  • Topex/Poseidon satellite, launched in Auguest 1992, has provided more 5 years of very good quality data. Efficient improvements, either about instrumental accuracy or about sea level data correction, have been made so that Topex/Poseidon has become presently a wonderful tool for many researchers. The first mission data of 73 cycles, September 1992 - August 1994, was used to our study in order to know characteristics of environmental correction factors in the Amsterdam-Crozet-Kerguelen region of the South Indian Ocean. According to standard procedures as defined under user handbook for sea surface height data processes, then we have chosen cycles 43 as the cycle of reference because this cycle has provided the completed data for measurement points and has presented the exacted position of ground track compared to another cycles. It was computed variations of various factors for correction in ascending ground track 103(Amsterdam-Kerguelen continental plateau) and descending ground track170 (Crozet basin). Here the variations of ionosphere, dry troposphere, humid troposphere, electromagnetic bias, elastic tide and loading tide were generally very smaller as a few of cm, but the variations of oceanic tide(30-35cm) and inverted barometer(15-30cm) were higher than another factors. For the correction of ocean tide, our model(CEFMO: Code d' Elements Finis pour la Maree Oceanique) - This is hydrodynamic model that is very well applicated in all oceanic situations - was used because this model has especially good solution in the coastal and island area as the open sea area. Conclusionally, it should be understood that the variation of ocean free surface is mainly under the influence of tides(>80-90%) in the Amsterdam - Crozet- Kerguelen region of the South Indian Ocean.

Comparison of Sea Level Data from Topex/Poseidon in-situ Tide-Gauges in the East Sea (한반도 동해상에서의 Topex/Poseidon 고도자료와 현장 조위계 관측 자료의 비교연구)

  • Youn, Yong-Hoon;Kim, Na-Young;Kim, Ki-Hyun;Hwang, Jong-Sun;Kim, Jeong-Woo
    • Journal of the Korean earth science society
    • /
    • v.23 no.4
    • /
    • pp.349-356
    • /
    • 2002
  • In an effort to properly assess the validity of spaceborne radar altimeter measurements, we made a direct comparison of two different sea surface heights (SSH) acquired by both Topex/Poseidon (T/P) satellite and in-situ tide-gauges (T/G). This comparative analysis was conducted using the data sets collected from three locations along the eastern coast of Korea which include: Ulleungdo, Pohang, and Sokcho. In the course of the analysis of satellite altimeter, information of SSH was extracted from the T/P MGDR data sets through the application of both atmospheric and geophysical corrections. To compare the T/P data sets in parallel basis, the T/G data sets were averaged using the measured values within the peripheral radius of 55km. When compared among different locations, the compatibility between the two methods was much more significant in an offshore location (Ulleungdo) than the two onshore locations (Pohang, Sokcho). If the low-pass filtered results were compared among the sites, the offshore site exhibited the best correlations between the two methods (correlation coefficient of 0.91) than those of the onshore sites. These large differences in the strength of correlations among different locations are due to the deformation of M2, S2, and K1 tidal components used in the tidal model. In case of the offshore location, the compatibility of the two different methods were improved systematically by the low-pass filtering with an increase of the filtering duration such as up to 200 days.