• 제목/요약/키워드: Satellite altimeter data

검색결과 59건 처리시간 0.025초

동아시아 주변해역에서의 TOPEX/POSEIDON 고도 자료와 현장 해수면 자료의 비교 (Comparison of Sea Level Data from TOPEX/POSEIDON Altimeter and in-situ Tide Gauges in the East Asian Marginal Seas)

  • 윤용훈;김기현;박용향;오임상
    • 한국해양학회지:바다
    • /
    • 제5권4호
    • /
    • pp.267-275
    • /
    • 2000
  • 동아시아 해역에서 TOPEX/POSEIDON(T/P) 위성 고도계로부터 관측된 해수면 자료의 객관성을 검증하기 위하여 위성궤적에 시 ${\cdot}$ 공간적으로 가장 상응하는 10개소 조위관측소 자료(tide gauge data: TG)를 택하여 비교분석을 시행하였다. 이를 위해, 1992년 10월부터 1998년 12월까지 관측된 T/P의 고도자료(2${\sim}$230번 사이클)를 비교분석에 활용하였다. 연구대상지역인 동아시아 주변 해상의 강한 조석현상으로 인해, T/P자료를 이용한 역학 고도의 산출에서 조석오차의 처리가 대단히 중요하다. 이러한 문제점을 감안하여, T/P자료의 처리는 Park and Gamberoni(1995)가 제시한 방법을 이용하였다. T/P자료를 처리한 결과, M$_2$, S$_2$, K$_1$ 분조에 의한 주기가 각각 62.1, 58.7, 173일 주기의 조석변형 오차로 나타났다. 이러한 오차의 영향들을 감소시키기 위해, Gaussian 방식을 이용하여 다양한 주기별로 저주파 필터를 적용하였다. 필터주기별로 처리된 결과를 비교하면, 최소 200일 이상의 저주파 필터를 적용할 때 T/P자료의 거짓 신호를 이상적으로 제거할 수 있음이 확인되었다. 따라서 200일을 기준으로 모든 조위관측점들에 대해 RMS값을 구한 결과 2.8${\sim}$6.7 cm의 범위로 나타났고, 두 측정방식간에서 통계적으로 유의한(P <0.0001)상관성이 일관성있게 확인되었다. 이러한 연구결과에 따르면, 조석오차가 큰 동아시아 주변 해역에서 해수면 변화를 연구하기 위해서는 조석 오차의 영향을 최대한 억제할 수 있는 장주기 (최소한 200일)를 기준으로 해수면자료를 비교하는 것이 바람직하다.

  • PDF

VULNERABILITY OF KOREAN COAST TO THE SEA-LEVEL RISE DUE TO $21^{ST}$ GLOBAL WARMING

  • 조광우;맹준호;윤종휘
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2003년도 추계학술발표회
    • /
    • pp.219-225
    • /
    • 2003
  • The present study intends to assess the long-term steric sea-level change and its prediction, and potential impacts to the sea-level rise due to the 21st global warming in the coastal zone of the Korea in which much socioeconomic activities have been occurred. The analysis of the 23 tide-gauge data near Korea reveals the overall mean sea-level trend of 2.31 mm/yr.In the satellite altimeter data (Topex/Poseidon and ERS), the sea-level trend in the East Sea is 4.6mm/yr. Both are larger than those of the global average value. However, it is quite questionable that the sea-level trends with the tide-gauge data on the neighboring seas of Korea relate to global warming because of the relatively short observation period and large spatial variability. It is also not clear whether the high trend of altimeter data in the East Sea is related to the acceleration of sea level rise in the Sea, short response time of the Sea, natural variability such as decadal variability, short duration of the altimeter. The coastal zone of Korea appears to be quite vulnerable to the 21st sea level rise such that for the I-m sea level rise with high tide and storm surge, the inundation area is 2,643 km2, which is about $1.2\%$ of total area and the population in the risk areas of inundation is 1.255 million, about $2.6\%$ of total population. The coastal zone west of Korea is appeared to be the most vulnerable area compared to the east and south. In the west of the Korea, the North Korea appears to be more vulnerable than South Korea. In order to cope with the future possible impact of sea-level rise to the coastal zone of Korea effectively, it is essential to improve scientific information in the sea-level rise trend, regional prediction, and vulnerability assessment near Korean coast.

  • PDF

Estimation of Sea Surface Current Vector based on Satellite Ocean Color Image around the Korean Marginal Sea

  • Kim, Eung;Ro, Young-Jae;Ahn, Yu-Hwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.816-819
    • /
    • 2006
  • One of the most difficult parameters to measure in the sea is current speed and direction. Recently, efforts are being made to estimate the ocean current vectors by utilizing sequential satellite imageries. In this study, we attempted to estimated sea surface current vector (sscv) by using satellite ocean color imageries of SeaWifs around the Korean Peninsula. This ocean color image data has 1-day sampling interval and spatial resolution of 1x1 km. Maximum cross-correlation method is employed which is aimed to detect similar patterns between sequential images. The estimated current vectors are compared to the surface geostrophic current vectors obtained from altimeter of sea level height data. In utilizing the color imagery data, some limitations and drawbacks exist so that in warm water region where phytoplankton concentration is relatively lower than in cold water region, estimation of sscv is poor and unreliable. On the other hand, two current vector fields agree reasonably well in the Korean South Sea region where high concentration of chlorophyll-a and weak tide is observed. In the future, with ocean color images of shorter sampling interval by COMS satellite, the algorithm and methodology developed in the study would be useful in providing the information for the ocean current around Korean Peninsula.

  • PDF

THE POTENTIAL OF SATELLITE REMOTE SENSING ON REDUCTION OF TSUNAMI DISASTER

  • Siripong, Absornsuda
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.52-55
    • /
    • 2006
  • It's used to be said that tsunami is a rare event. The recurrence time of tsunami in Sumatra area is approximately 230 years as CalTech Research Group‘s study from paleocoral. However, the tsunami occurred in Indian Ocean on 26 December 2004, 28 March 2005 and 17 July 2006, because the earthquakes still release the energy. To cope with the tsunami disaster, we have to put the much effort on better disaster preparedness. The Tsunami Reduction Of Impacts through three Key Actions (TROIKA) was suggested by Eddie N. Bernard, the director of NOAA/PMEL (Pacific Marine Environmental Laboratory). They are Hazard Assessment, Mitigation and Warning Guidance. The satellite remote sensing has potential on these actions. The medium and high resolution satellite data were used to assess the degree of damage at the six-damaged provinces on the Andaman seacoast of Thailand. Fast and reliable interpretation of the damage by remote sensing method can be used for inundation mapping, rehabilitation and housing plans for the victims. For tsunami mitigation, the satellite data can be used with GIS to construct the evacuation map (evacuation route and refuge site) and coastal zone management. It is also helpful for educational program for local residents and school systems. Tsunami is a kind of ocean wave, therefore any satellite sensors such as SAR, Altimeter, MODIS, Landsat, SPOT, IKONOS can detect the tsunami wave in 2004. The satellite images have shown the characteristics of tsunami wave approaching the coast. For warning, satellite data has potential for early warning to detect the tsunami wave in deep ocean, if there are enough satellite constellation to monitor and detect the first tsunami wave like the pressure gauge, seismograph and tide gauge with the DART buoy can do. Moreover, the new methods should be developed to analyse the satellite data more faster for early warning procedure.

  • PDF

THE TATAR STRAIT SEA LEVEL SESONAL VARITIONS BY SAT-ELLITE ALTIMETRY DATA

  • Sedaeva, Olga;Romanov, Alexander;Vilyanskaya, Elena;Shevchenko, Georgy
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.844-847
    • /
    • 2006
  • In this work Topex/Poseidon altimeter data 1993 - 2002 were used. There are three altimetry tracks (one ascending and two descending) that cross Tatar Strait. The data were collected in the points of sub-satellite tracks with the step 0.25 degree. 10-years average values were calculated for each month. The seasonal sea level variations were compared with tide gauges data. The well expressed annual cycle (with maximum at July-August and the minimum at February-March) prevails in the Tartar Strait. However, the seasonal variations expressed much weakly in both the altimetry track points and Kholmsk - Nevelsk tide-gauges that locate close to La Perouse Strait because of Okhotsk Sea influence. The sea level slopes between the Sakhalin Island and the continent coasts were analyzed in different seasons. We found that sea level increases near Sakhalin coast in spring and summer that corresponds to the northward flow. In autumn, otherwise, the sea level decreases near Sakhalin Island that corresponds to southward current. This result is verified by the CTD data gathered on the standard sections. Well-expressed upwelling is observed near coastline of Sakhalin Island in fall season. This phenomenon is caused by the northerly and the northwesterly wind which are typical for cold season.

  • PDF

Variations of Sea Level and Sea Surface Temperature in Korean Seas by Topex/Poseidon and NOAA

  • Yoon, Hong-Joo;Kang, Heung-Soon;Cho, Han-Keun
    • 대한원격탐사학회지
    • /
    • 제23권1호
    • /
    • pp.59-63
    • /
    • 2007
  • Altimeter (Topex/Poseidon) and AVHRR (NOAA) data were used to study the variations and correlations of Sea Level (SL) and Sea Surface Temperature (SST) in the North East Asian Seas from November 1993 to May 1998. This region is influenced simultaneously to continental and oceanic climate as the border of the East Sea (Japan Sea). SL and SST have increased gradually every year because the global warming, and presented usually a strong annual variations in Kuroshio extension region with the influence of bottom topography.

Geostrophic Velocities Derived from Satellite Altimetry in the Sea South of Japan

  • Kim, Seung-Bum
    • 대한원격탐사학회지
    • /
    • 제18권5호
    • /
    • pp.243-253
    • /
    • 2002
  • Time-mean and absolute geostrophic velocities of the Kuroshio current south of Japan are derived from TOPEX/Poseidon altimeter data using a Gaussian jet model. When compared with simultaneous measurements from a shipboard acoustic Doppler current profiler (ADCP) at two intersection points, the altimetric and ADCP absolute velocities correlate well with the correlation coefficient of 0.55 to 0.74. The accuracy of time-mean velocity ranges from 1 cm s$^{-1}$ to 5 cm s$^{-1}$. The errors in the absolute and the mean velocities are similar to those reported previously for other currents. The comparable performance suggests the Gaussian jet model is a promising methodology for determining absolute geostrophic velocities, noting that in this region the Kuroshio does not meander sufficiently and thus provides unfavorable environment for the performance of the Gaussian jet model.

A Study in the neighbouring sea variation of Cheju and Influence of China Coastal Water by Topex/Poseidon Altimeter Data and in-situ Salinity Data

  • Cho Han Keun;Yoon Hong Joo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.188-191
    • /
    • 2004
  • Appearance and disappearance of the China Coastal Waters(CCW) in the neighbouring sea of Cheju Island was very different yearly but usually appeared strongly in summer. At this time, sea level and salinity were varied in this area by the influence of the CCW. Satellite data(T/P;Topex/Poseidon) and Salinity (NFRID;National Fisheries Research and Development Institute) were used from 1993 to 2001. We compared with TG data of NOR I and TIP data in the observed station(33 31'N, 12632'E). Coefficient of correlation was 0.6~0.8 with the exception of 1993 and 1995. And variations of salinity was higher than $32.00\%_{\circ}$ in the southwestern part of Cheju Island and the southern part of the South Sea of Korea during June-October and SLA(Sea level Anomaly) was 10-11cm. Salinity of the southeastern part was higher than those of the southwestern part and SLA was 12~13cm because of the influence of Tsushima Current.

  • PDF

SL/SST variations and their correlations in the North East Asian Sens by remote sensing (Topex/Poseidon, NOAA)

  • Yoon, Hong-Joo
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2003년도 공동 춘계학술대회 논문집
    • /
    • pp.297-299
    • /
    • 2003
  • Altimeter(Topex/Poseidon) and AVHRR(NOAA) data were used to study the variations and correlations of Sea Level(SL) and Sea Surface Temperature (SST) in the North East Asian Seas from November 1993 to May 1998. This region is influenced simultaneously to continental and oceanic climate as the border of the East Sea(Japan Sea). SL and SST have increased gradually every year because the global warming, and presented usually a strong annual variations in Kuroshio extension region with the influence of bottom topography.

  • PDF

SL/SST variations and their Correlations in the North East Asian Seas by Remote Sensing

  • Yoon, Hong-Joo
    • Journal of information and communication convergence engineering
    • /
    • 제1권1호
    • /
    • pp.58-60
    • /
    • 2003
  • Altimeter(Topex/Poseidon) and AVHRR(NOAA) data were used to study the variations and correlations of Sea Level(SL) and Sea Surface Temperature (SST) in the North East Asian Seas from November 1993 to May 1998. This region is influenced simultaneously to continental and oceanic climate. SL and SST have increased gradually every year because the global warming, and presented usually a strong annual variations in Kuroshio extension region with the influence of bottom topography.