• 제목/요약/키워드: Satellite System

Search Result 4,278, Processing Time 0.033 seconds

Coupler Implementation and Antenna Tracking Accuracy Analysis for Ku-band Multi-mode Monopulse Satellite Tracking System (Ku 대역 다중모드 모노펄스 위성추적시스템을 위한 커플러 구현 및 안테나 추적정확도 분석)

  • Lee, Jaemoon;Lim, Jaesung;Park, Dohyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.363-370
    • /
    • 2016
  • This paper proposes a Ku-band multi-mode coupler and its monopulse tracking system, which can be applied to a unmaned aircraft vehicle(UAV) platform. In general, the carrier-to-noise(C/N) level of the beacon signal from a Ku-band commercial satellite is relatively weak compared to that of a military satellite because the Ku-band satellite has been designed for commercial services. Therefore, this paper proposes a coupler and its multi-mode monopulse tracking system satisfying the tracking accuracy under a low C/N environment and analyzes the tracking accuracy. After that, we perform a real satellite tracking test and compare the accuracy of the test with the analysis result before validating the performance of the architecture of the proposed satellite tracking system.

Design and Analysis of Composite Reflector of High Stable Deployable Antenna for Satellite (위성용 전개형 고안정 반사판 안테나 복합재 주반사판 설계 및 해석)

  • Dong-Geon Kim;Kyung-Rae Koo;Hyun-Guk Kim;Sung-Chan Song;Seong-Cheol Kwon;Jae-Hyuk Lim;Young-Bae Kim
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.230-240
    • /
    • 2023
  • The deployable reflector antenna consists of 24 unit main reflectors, and is mounted on a launch vehicle in a folded state. This satellite reaches the operating orbit and the antenna of satellite is deployed, and performs a mission. The deployable reflector antenna has the advantage of reduce the storage volume of payload of launch vehicle, allowing large space structures to be mounted in the limited storage space of the launch vehicle. In this paper, structural analysis was performed on the main reflector constituting the deployable reflector antenna, and through this, the initial conceptual design was performed. Lightweight composite main reflector was designed by applying a carbon fiber composite and honeycomb core. The laminate pattern and shape were selected as design variables and a design that satisfies the operation conditions was derived. Then, the performance of the lightweight composite reflector antenna was analyzed by performing detailed structural analysis on modal analysis, quasi-static, thermal gradient, and dynamic behavior.

A Study on the Satellite Orbital Positioning Method for Efficient Orbit Utilization (궤도자원의 효율적인 활용을 위한 위성궤도 선정 기법에 관한 연구)

  • 권태곤;박세경김재명
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.147-150
    • /
    • 1998
  • To determine the satellite orbital positions under consideration of interference caused by inter-satellite systems is one of the most important issues in terms of optimal usage of satellite network resources. In this paper, we present the orbital positioning method for a new satellite to minimize inter-satellite system interference effect in the fixed satellite communication using a new method. Through the computer simulation, it is clear that the proposed method is suitable to determine the satellite orbital positions.

  • PDF

A Study on Network Operation Structure and DataLink Protocol for Interworking of Ground Network ALL-IP at Next-Military Satellite Communication (차기군위성통신에서 지상망 ALL-IP 연동을 위한 네트워크 운용구조 및 데이터링크 프로토콜 연구)

  • Lee, Changyoung;Kang, Kyungran;Shim, Yong-hui
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.826-841
    • /
    • 2018
  • The military satellite communication of ROK military, ANASIS is designed for analog data such as voice and streaming data. ANASIS cannot fully support ALL-IP communications due to its long propagation delay. The next generation satellite communication system is being designed to overcome the limitation. Next generation satellite communications system considers both high-speed and low-speed networks to support various operating environment. The low-speed satellite supports both broadband and narrow-band communication. This network works as the infrastructure for of wide-area internetworking over multiple AS's in the terrestrial network. It requires minimum satellite frequency and minimum power and works without PEP and router. In this paper, we propose a network operation structure to enable the inter-operation between high and low-speed satellite networks. In addition, we propose a data link protocol for low speed satellite networks.

An Autonomous Command Recommend and Execution System for the Satellite Operation (위성 운영을 위한 이벤트 시퀀스 기반의 자동 명령 추천 및 수행 시스템)

  • Yang, Seung-Eun;Jung, Jae-Yeop;Cheon, Yee-Jin
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.29-37
    • /
    • 2014
  • Telemetry, satellite event and error information are used to check the satellite status in ground station. Different from telemetry which only informs the parameter value, event and error gives explicit information of a certain operation or status. Event also contains ground action information because every command execution is logged as event. Currently, those information is gathered and applied only for monitoring of the satellite. However, the load of the operation is getting grown because of the excessively increased information of the satellite with the number of satellite increasement. Also, the process of reporting problem to developer (or an expert) induce time delay for satellites fault management. In this paper, we propose a satellite operation assistant system which collects event sequence and stores in different group by its feature, and then recommends or executes an appropriate action for the identified abnormal state. This system is applicable to on board system for resolving LEO-satellite autonomous fault situation since is has limited contact time.

Implementation and Validation of Earth Acquisition Algorithm for Communication, Ocean and Meteorological Satellite

  • Park, Sang-Wook;Lee, Young-Ran;Lee, Byoung-Sun;Hwang, Yoo-La;Lee, Un-Seob
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.4
    • /
    • pp.345-354
    • /
    • 2011
  • Earth acquisition is to solve when earth can be visible from satellite after Sun acquisition during launch and early operation period or on-station satellite anomaly. In this paper, the algorithm and test result of the Communication, Ocean and Meteorological Satellite (COMS) Earth acquisition are presented in case of on-station satellite anomaly status. The algorithms for the calculation of Earth-pointing attitude control parameters including those attitude direction vector, rotation matrix, and maneuver time and duration are based on COMS configuration (Eurostar 3000 bus). The coordinate system uses the reference initial frame. The constraint calculating available time-slot to perform the earth acquisition considers eclipse, angular separation, solar local time, and infra-red earth sensor blinding conditions. The results of Electronics and Telecommunications Research Institute (ETRI) are compared with that of the Astrium software to validate the implemented ETRI software.

Assessment of the Near Real-Time Validation for the AQUA Satellite Level-2 Observation Products

  • Yang Min-Sil;Lee Jeongsoon;Lee Chol;Park Jong-Seo;Kim Hee-Ah
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.35-38
    • /
    • 2004
  • We developed a Near Real-Time Validation System (NRVS) for the Level-2 Products of AQUA Satellite. AQUA satellite is the second largest project of Earth Observing System (EOS) mission of NASA. This satellite provides the information of water cycle of the entire earth with many different forms. Among its products, we have used five kinds of level-2 geophysical parameters containing rain rate, sea surface wind speed, skin surface temperature, atmospheric temperature profile, and atmospheric humidity profile. To use these products in a scientific purpose, reasonable quantification is indispensable. In this paper we explain the near real-time validation system process and its detail algorithm. Its simulation results are also analyzed in a quantitative way. As reference data set in-situ measured meteorological data which are periodically gathered and provided by the Korea Meteorological Administration (KMA) is processed. Not only site-specific analysis but also time-series analysis of the validation results are explained and detail algorithms are described.

  • PDF

Analysis of the Relation between Spatial Resolution of Initial Data and Satellite Data Assimilation for the Evaluation of Wind Resources in the Korean Peninsula (한반도 풍력자원 평가를 위한 초기 공간해상도와 위성자료 동화의 관계 분석)

  • Lee, Soon-Hwan;Lee, Hwa-Woon;Kim, Dong-Hyuk;Kim, Hyeon-Gu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.653-665
    • /
    • 2007
  • Several numerical experiments were carried out to clarify the influence of satellite data assimilation with various spatial resolution on mesoscale meteorological wind and temperature field. Satellite data used in this study is QuikSCAT launched on ADEOS II. QuikSCAT data is reasonable and faithful sea wind data, which have been verified through many observational studies. And numerical model in the study is MM5 developed by NCAR. Difference of wind pattern with and without satellite data assimilation appeared clearly, especially wind speed dramatically reduced on East Sea, when satellite data assimilation worked. And sea breeze is stronger in numerical experiments with RDAPS and satellite data assimilation than that with CDAS and data assimilation. This caused the lower estimated surface temperature in CDAS used cases. Therefore the influence of satellite data assimilation acts differently according to initial data quality. And it is necessary to make attention careful to handle the initial data for numerical simulations.

The Technique of Satellite Tracking and Beam Forming for Mobile TT&C (이동형 위성 관제를 위한 위성 위치 파악 및 빔 성형 기법)

  • Lee, Yun-Soo;Chinn, Yong-Ohk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.12
    • /
    • pp.1359-1369
    • /
    • 2007
  • This paper describes the technique of satellite direction finding and main beam steering of the adaptive array antenna system which is used for mobile TT&C(Tracking Telemetry&Command) system. To be able to control the satellite on mobile vehicle while moving, the relative directional information of the satellite to the mobile vehicle is necessary to make main beam to the direction of satellite. To do this MUSIC, which is one of the super-resolution algorithm of wave direction finding, is used and then the performance analysis and quantization problem of phase shifter are addressed. This paper is valuable in the respect of showing feasibility of designing the moble TT&C using adative array antenna system.