• Title/Summary/Keyword: Satellite Signals

Search Result 512, Processing Time 0.02 seconds

Precision Positioning of a Stationary Transporter Using a Fault Detection and Isolation Method (정적 상태의 이동체 위치 정밀도 향상을 위한 오류 검출 및 배제 기법)

  • An, Jong-Woo;Kim, Yun-Ki;Lee, Jae-Kyung;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.859-868
    • /
    • 2016
  • This paper proposes a new global positioning system (GPS) receiver algorithm to improve the positioning accuracy of a transporter using fault detection and isolation techniques from satellite signals. To improve the positioning accuracy, several factors including a feasible number of satellite signals, SNR, NAV Measurement Quality Indicator (mesQI), and Doppler, among others, have been utilized in the proposed algorithm. To increase the number of feasible satellite signals, an erroneous satellite signal has been replaced by the previous one. In conventional approaches, received GPS signals are analyzed and directly determined to be contaminated or not. The only clean signals are utilized for identifying the current location. This fault detection and isolation (FDI) feasibility test is popular for commercial GPS receivers. In the urban environment, especially near a building, the feasible number of satellite signals becomes insufficient to position the transporter. To overcome this problem, satellite signals are efficiently selected and recovered. Additionally, using the proposed GPS receiver algorithm, a feasible number of satellite signals can be increased, thereby improving the positional accuracy. Real world experiments using a transporter that carries blocks in a shipyard have demonstrated the superiority of the proposed algorithm compared to conventional approaches.

Software-based Real-time GNSS Signal Generation and Processing Using a Graphic Processing Unit (GPU)

  • Im, Sung-Hyuck;Jee, Gyu-In
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.3
    • /
    • pp.99-105
    • /
    • 2014
  • A graphic processing unit (GPU) can perform the same calculation on multiple data (SIMD: single instruction multiple data) using hundreds of to thousands of special purpose processors for graphic processing. Thus, high efficiency is expected when GPU is used for the generation and correlation of satellite navigation signals, which perform generation and processing by applying the same calculation procedure to tens of millions of discrete signal samples per second. In this study, the structure of a GPU-based GNSS simulator for the generation and processing of satellite navigation signals was designed, developed, and verified. To verify the developed satellite navigation signal generator, generated signals were applied to the OEM-V3 receiver of Novatel Inc., and the measured values were examined. To verify the satellite navigation signal processor, the performance was examined by collecting and processing actual GNSS intermediate frequency signals. The results of the verification indicated that satellite navigation signals could be generated and processed in real time using two GPUs.

Adaptive Beamformer Using Signal Location Information for Satellite

  • Kim, Se-Yen;Hwang, Suk-seung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.379-385
    • /
    • 2020
  • The satellite employs an adaptive beamformer to efficiently detect various signals and to suppress multiple interference signals, simultaneously. Although the adaptive beamforming satellite system needs Angle-of-Arrival (AOA) information of the desired signal, it is difficult to estimate the signal AOAs on the satellite environment. However, the AOA estimation on the ground control tower is more efficient and accurate comparing to the satellite environment. In this paper, we propose an adaptive beamforming satellite system based on the signal location information on the ground, consisting on an angle estimator, an adaptive beamformer, and signal processing & D/B unit. The ground control tower estimates the accurate location of the signal source, and it sends the estimated coordinates of the desired signal to the satellite. The angle estimator mounted on the satellite calculates the desired signal AOA, based on the signal location information transmitted from the ground control center. The satellite beamformer detects the desired signal and suppresses unwanted signals based on the signal AOA calculated by the angle estimator. We provide computer simulation results to present the performance of the proposed satellite adaptive beamforming system based on the signal location information.

Evaluation of the Interference from the Digital Broadcasting Satellite Networks into the Analogue Networks (디지틀 방소위성망이 아날로그 방송위성망으로 미치는 간섭량 평가)

  • 진광자;박세경김재명
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.151-154
    • /
    • 1998
  • The interference evaluation methods and criteria between the analogue TV/FM signals for BSS(Broadcasting Satellite Service) plans and the associated feeder link plans were established in WARC(World Administrative Radio Conference)-77 and 88. However, it should be applied the different interference evaluation methods and criteria of the digital TV signals from those of the analogue TV/FM signals. In this paper, the interference evaluation methods and criteria between the digital TV signals and the analogue TV/FM signals were analyzed. And also, the effects of the interference from the digital signals for Koreasat-1 into the analogue TV/FM signals for Japanese broadcasting satellite were evaluated. The amounts of EIRP reduction in the transmitting space stations were calculated to meet the interference criteria. The results showed that the digital BSS networks including Koreasat-1 would share the limited resources with the analogue BSS networks.

  • PDF

Design of an Enhanced TDOA Method for Swept CW Interferences

  • Kang, Hee Won;Lim, Deok Won;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.23-27
    • /
    • 2012
  • Recently, devices like Personal Privacy Devices (PPD) are being employed to avoid the detection of one's location by GPS, and most PPD transmits swept CW signals. However, signals transmitted from PPD may interfere a precise location system based on GPS. Accordingly, in order to reduce interferences by PPD, a technique to locate an interferer is needed. In order to locate an interferer AOA method and TDOA method are generally used, TDOA method is known to be more accurate than AOA method. Unfortunately, TDOA method has a problem of ambiguity in obtaining measurements of swept CW interference. Thus, this paper design a localization algorithm based on TDOA method that can accurately locate an interferer transmitting swept CW signals by resolving problem of ambiguity. In addition, feasibility of the designed algorithm has been verified by simulation results.

Status of Navigation Satellite System Services and Signals (위성항법시스템 서비스 및 신호 현황)

  • K. Han;E. Bang;H. Lim;S. Lee;S. Park
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.2
    • /
    • pp.12-25
    • /
    • 2023
  • Positioning, navigation, and timing information has become a key element in the national core infrastructure and for emerging technologies, such as autonomous driving, lunar exploration, financial systems, and drones. Therefore, the provision of that information by navigation satellite systems is becoming increasingly important. Existing systems such as GPS (Global Positioning System), GLONASS (GLObal NAvigation Satellite System), and BDS (BeiDou Navigation Satellite System) also provide augmentation, safety-of-life, search & rescue and short message communication and authentication services to increase their competitiveness. Those services and the signals generated for their provision have their own purpose and requirements. This article presents an overview of existing or planned satellite navigation satellite system services and signals, aiming to help understand their current status.

Interference Analysis of KPS Signals on the L-band GNSS Signals

  • Shin, Jang Hwan;Lim, Deok-Won;Joo, Jung-Min;Lee, Sang Jeong;Song, Hong-Yeop;Won, Jong-Hoon;Ahn, Jae Min
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.319-325
    • /
    • 2020
  • In order to propose new satellite navigation signals, it is essential to analyze the increased level of interference effect that the existing signals suffer. In this paper, a method for estimating the power density of the interference signals on GPS signals is proposed before and after the additional transmission of the KPS signals in the L1, L2 and L5 bands. For estimation, we assume the number of visible satellites observed over the Korean peninsular and the minimum received power of the satellite navigation signals. The comparison of the estimated values shows that the power density of the interfering signal increases by up to 1.37 dB due to the introduction of KPS, but this leads to an increase in interference plus noise power density below 0.47 dB.

Navigation Performance Analysis of KASS Test Signals

  • Daehee Won;Eunsung Lee;Chulhee Choi
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.369-377
    • /
    • 2023
  • This paper presents the analysis results of navigation performance of Korea Augmentation Satellite System (KASS) test signals. Performance analysis was performed with Global Positioning System (GPS) and Satellite Based Augmentation System (SBAS) signals received from 7 KASS reference stations. And the performances were analyzed in terms of the signal strength, statistics for each SBAS message, coverage of ionospheric correction, accuracy, integrity, continuity, and availability. In addition, the navigation solutions provided by commercial receiver was analyzed and the performance experienced by general users was presented. Lastly, directions for further improvement of the KASS system were addressed. These performance analysis results can be used to confirm the feasibility of utilizing KASS in user applications.

Performance Analysis of Beamforming Satellite System Applying Circular Array Antenna (원형 형상 배열 안테나를 적용한 위성 빔형성 시스템 성능 분석)

  • Kim, Tae-Yun;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.845-852
    • /
    • 2019
  • The main goal of Signal Intelligence (SIGNT) based on a satellite is to collect valid and accurate data without the topographical constraints, but, due to the characteristics of the satellite communication, the collected signals are greatly vulnerable to the influence of interference and jamming signals because their power are very low. Therefore, the high performance techniques of estimating the angle of arrivals (AOAs) of the collected signals and suppressing interference signals are required for collecting various signals on the ground employing the satellite. In addition, the high quality of the transmission beam-forming technique is required for accurately transmitting the collected information to a ground control center. In this paper, we present a beam-forming satellite system based on a circular array antenna, considering the above techniques, and evaluate and analysis the performance of the presented beam-forming system through the computer simulation. The circular array antenna structure is expected to effectively employ for the SIGINT system based on a satellite, because it is suitable to be installed in the satellite.

IMAGE DATA CHAIN ANALYSIS FOR SATELLITE CAMERA ELECTRONIC SYSTEM

  • Park, Jong-Euk;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun;Chang, Young-Jun
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.791-793
    • /
    • 2006
  • In the satellite camera, the incoming light source is converted to electronic analog signals by the electronic component for example CCD (Charge Coupled Device) detectors. The analog signals are amplified, biased and converted into digital signals (pixel data stream) in the video processor (A/Ds). The outputs of the A/Ds are digitally multiplexed and driven out using differential line drivers (two pairs of wires) for cross strap requirement. The MSC (Multi-Spectral Camera) in the KOMPSAT-2 which is a LEO spacecraft will be used to generate observation imagery data in two main channels. The MSC is to obtain data for high-resolution images by converting incoming light from the earth into digital stream of pixel data. The video data outputs are then MUXd, converted to 8 bit bytes, serialized and transmitted to the NUC (Non-Uniformity Correction) module by the Hotlink data transmitter. In this paper, the video data streams, the video data format, and the image data processing routine for satellite camera are described in terms of satellite camera control hardware. The advanced satellite with very high resolution requires faster and more complex image data chain than this algorithm. So, the effective change of the used image data chain and the fast video data transmission method are discussed in this paper

  • PDF