• Title/Summary/Keyword: Satellite Separation

Search Result 132, Processing Time 0.025 seconds

Pyroshock measurement results of satellite mock-up for launch vehicle (발사체 목업(Mock-up) 위성의 파이로 충격 측정 결과)

  • Youn, S.H.;Jeong, H.K.;Seo, S.H.;Jang, Y.S.;Yi, Y.M.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.363-366
    • /
    • 2006
  • In general, pyrotechnic shock or pyroshock is generated during the operation of separation devices, which use explosives, such as pyrobolt, puronut, purocutter, linear shape charge, and so on. During the flight of launch vehicle, pyroshock is mainly produced at the events of satellite separation, fairing separation and stage separation. In this paper, characteristics of pyroshock are introduced in the first place and measured shock result data at the UMR of satellite mock-up during the separation tests of satellite and fairing are suggested. These results are compared with the suggested pyroshock test specification of satellite, and it finally confirms that the specification is reasonable for the qualification of satellite against pyroshock.

  • PDF

A Study on the Satellite Launch Vehicle Separation Detection Interface to Improve the Reliability of the Launch and Early Operation Phase

  • Lee, Nayoung;Kwon, Dong-young;Jeon, Hyeon-Jin;Jeon, Moon-Jin;Cheon, Yee-Jin
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.57-63
    • /
    • 2021
  • The launch vehicle (LV) separation detection interface of the satellite, which is designed to initiate the launch and early operation phase (LEOP) for S-band data transmission and the solar array deployment after the LV separation, is one of the hazard items at the launch site. Therefore, this interface should satisfy the single-fault tolerance requirement for the range safety. In this paper, we discuss the LV separation detection interfaces for two different satellite launch configurations and propose a method to guarantee for the satellite to start the LEOP even under the emergency case such as a partial separation from the LV. Furthermore, the proposed method meets the range safety requirement of the launch site. As this method only changes the external harness configuration of the satellite, it increases the reliability of the satellite early operation without any modification of the existing internal logics to detect the separation event.

Shape Memory Alloy Actuator and Spiral Spring Based Separation Actuator for Small Satellite (형상기억합금구동기와 태엽스프링을 이용한 소형위성용 분리장치)

  • Lee, Min-Hyoung;Son, Jae-Hwang;Kim, Young-Woong;Kim, Byung-Kyu
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.3
    • /
    • pp.10-15
    • /
    • 2011
  • The separation actuator for the small satellite should fix satellite appendages with high clamping force. After operation, it has to be separated from the satellite body without any damage on satellite system and release the appendages such as a solar panel and an antenna successfully. Therefore, we invent a non-explosive separation actuator for the small satellite which generates low shock and is resettable. In order to confirm performance of the proposed separation actuator, we carried out experiments for separation time, maximum preload for activation, and shock level.

Mechanism Design of Cube Satellite for Multi-deployable Structures and Autonomous System Operation after Launcher Separation (복수구조 전개 및 발사체 분리직후 시스템 자동운용을 위한 큐브위성의 메커니즘 설계)

  • Lee, Myoung-Jae;Jung, Hyun-Mo;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.20-25
    • /
    • 2013
  • In case of cube satellite, it is difficult to realize the same performance as commercial satellite due to its highly restricted unit accommodation space. To maximize the performance of the cube satellite, design concept considering the multi-function of satellite is required. In this paper, mechanism design of cube satellite which is applicable for the holding and release of multi-deployable structures has been proposed and investigated. In addition, a switch mechanism design for the autonomous system operation just after the cube satellite separation from P-POD has also been proposed. The effectiveness of the mechanism design for holding and release of multi-deployable structures has been demonstrated by EM test of the holding and release mechanism.

A Compatibility Study Between New Allocation to Maritime Mobile Satellite Service and Earth Exploration Satellite Service in X-band (X 대역 해상이동위성업무 추가 주파수 분배를 위한 지구탐사위성업무와의 양립성 연구)

  • Oh, Dae-Sub;Jung, Nam-Ho;Kim, Sooyoung
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.3
    • /
    • pp.41-46
    • /
    • 2013
  • In this paper, we present the compatibility study results including the frequency sharing criteria between new allocation to maritime mobile satellite service and Earth exploration satellite service in the 7/8 GHz. The transmitting Earths station of MMSS in the 8025 - 8400 MHz band would make harmful interference to the receiving Earth station of EESS operating in the same frequency band. In order to ensure the compatibility with EESS, the separation distance is provided as a frequency sharing criteria. The republic of Korea has a plan to launch the geostationary satellite around 2017 and EESS Earth station will be operated in 8025 - 8400 MHz band. Therefore, we calculate the interference levels and separation distance using the system parameters of two Earth station systems. As results of the study, the separation distances for LOS path and Non-LOS path due to the geographical characteristics are shown around 471 km and 200 km, respectively.

Development of a New Droplet Collision Model Including the Stretching Separation Regime (스트레칭 분리 영역을 포함한 새로운 액적 충돌 모델의 개발)

  • Ko, Gwon-Hyun;Ryou, Hong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1891-1896
    • /
    • 2004
  • The present article proposes a new droplet collision model including the stretching separation regime and the formation of satellite droplets. The new model consists of a several equations to calculate the post-collision characteristics of colliding droplets and satellite droplets. These equations are derived from the energy balance of droplets between before and after collision. For binary collision of water droplets, the new model shows good agreement with experimental data for the number of satellite droplets. Nevertheless, it is thought that, in order to guarantee the generality of the new model, the improvements should be performed to consider the effects of the bouncing and the reflexive separation, which is essential process in the collision of hydrocarbon droplets.

  • PDF

COMS Shock Test Assessment by Using the Extrapolation Method (외삽법을 이용한 천리안위성 충격시험 분석)

  • Lee, Ho-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.439-445
    • /
    • 2012
  • The COMS(Communication, Ocean, and Meteorological Satellite) is subjected to shock loads when the stage or fairing of a launch vehicle is separated and the satellite is separated from the launch vehicle during the launch vehicle flight. And, after the satellite is separated from the launcher, the COMS is subjected to shock loads when the solar array is deployed, Ka-Band communication antenna is deployed, and meteorological imager radiator cover is released. In order to validate the satellite safety against these shock loads on ground, shock tests were performed. In this paper, the shock tests performed in the course of the COMS development are described, and the method to assess the test result is presented with an example of Geostationary Ocean Color Imager(GOCI). In Ariane-5 launch vehicle, the clampband release shock for satellite separation is lower than the fairing or stage separation. In this paper, the extrapolation method to take into account the maximum shock load from the launch vehicle by using the satellite separation shock test result is also introduced.

Performance Verification of Separation Nut Type Non-explosive Separation Device for Cube Satellite Application (큐브위성 적용을 위한 분리너트형 비폭발식 구속분리장치 인증모델의 성능검증)

  • Oh, Hyun-Ung;Lee, Myeong-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.827-832
    • /
    • 2013
  • Heating wire cutting type separation mechanism has been widely used for cube satellite applications due to its design constraints such as small size of $10cm{\times}10cm{\times}10cm$ and light weight of less than 1kg. In addition, usage of pyro technic device is not allowed for cube satellite application. The conventional methods have some disadvantages of relatively small mechanical constraint force and the system complexity for the multi-deployable systems. In this paper, a separation nut type non-explosive separation mechanism has been proposed and investigated. The effectiveness of the design has been verified through the qualification tests of the mechanism.

Assessment of Earth Remote Sensing Microsatellite Power Subsystem Capability during Detumbling and Nominal Modes

  • Zahran M.;Okasha M.;Ivanova Galina A.
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.18-28
    • /
    • 2006
  • The Electric Power Subsystem (EPS) is one of the most critical systems on any satellite because nearly every subsystem requires power. This makes the choice of power systems the most important task facing satellite designers. The main purpose of the Satellite EPS is to provide continuous, regulated and conditioned power to all the satellite subsystems. It has to withstand radiation, thermal cycling and vacuums in hostile space environments, as well as subsystem degradation over time. The EPS power characteristics are determined by both the parameters of the system itself and by the satellite orbit. After satellite separation from the launch vehicle (LV) to its orbit, in almost all situations, the satellite subsystems (attitude determination and control, communication and onboard computer and data handling (OBC&DH)), take their needed power from a storage battery (SB) and solar arrays (SA) besides the consumed power in the EPS management device. At this point (separation point, detumbling mode), the satellite's angular motion is high and the orientation of the solar arrays, with respect to the Sun, will change in a non-uniform way, so the amount of power generated by the solar arrays will be affected. The objective of this research is to select satellite EPS component types, to estimate solar array illumination parameters and to determine the efficiency of solar arrays during both detumbling and normal operation modes.

Development of a New Droplet Binary Collision Model Including the Stretching Separation Regime (스트레칭 분리 영역을 포함한 새로운 액적간 충돌 모델의 개발)

  • Ko, G.H.;Lee, S.H.;Roh, J.S.;Ryou, H.S.
    • Journal of ILASS-Korea
    • /
    • v.11 no.2
    • /
    • pp.75-80
    • /
    • 2006
  • The present article proposes a new droplet collision model including the stretching separation regime and the formation of satellite droplets. The new model consists of several equations to calculate the post-collision characteristics of colliding droplets and satellite droplets. These equations are derived from the energy balance of droplets between before and after collision. For binary collision of water droplets, the new model shows good agreement with experimental data far the number of satellite droplets.

  • PDF