• Title/Summary/Keyword: Satellite Optical System

Search Result 280, Processing Time 0.024 seconds

Pointing Accuracy Analysis of Space Object Laser Tracking System at Geochang Observatory (거창 우주물체 레이저 추적 시스템의 추적마운트 지향 정밀도 분석)

  • Sung, Ki-Pyoung;Lim, Hyung-Chul;Park, Jong-Uk;Choi, Man-Soo;Yu, Sung-Yeol;Park, Eun-Seo;Ryou, Jae-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.11
    • /
    • pp.953-960
    • /
    • 2021
  • Korea Astronomy and Space Science Institute has been verifying the multipurpose laser tracking system with three functions of satellite laser tracking, adaptive optics and space debris laser tracking for not only scientific research but also national space missions. The system employs an optical telescope consisting of a 100 cm primary mirror and an altazimuth mount for fast and precise tracking. The precise pointing and tracking capability in a tracking mount is considered as one of important performance metrics in the fields of automatic tracking and precise application research. So it is required to analyze a mount model for investigating pointing error factors and compensating pointing error. In this study, we investigated various factors causing static pointing errors of tracking mount and analyzed the pointing accuracy of the tracking mount at Geochang observatory by estimating mount parameters based on the least square method.

Thermal and telemetry module design for satellite camera

  • Kong, Jong-Pil;Yong, Sang-Soon;Heo, Haeng-Pal;Kim, Young-Sun;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.229-234
    • /
    • 2002
  • Under the hostile influence of the extreme space environmental conditions due to the deep space and direct solar flux, the thermal control in space applications is especially of major importance. There are tight temperature range restrictions for electro-optical elements while on the other hand there are low power consumption requirements due to the limited energy sources on the spacecraft. So, we usually have strong requirement of thermal and power control module in space applications. In this paper, the design concept of a thermal and power control module in the MSC(Multi-Spectral Camera) system which will be a payload on KOMPSATII is described in terms of H/W & S/W. This thermal and power control module, called THTM(Thermal and Telemetry Module) in MSC, resides inside the PMU(Payload Management Unit) which is responsible for the proper management of the MSC payload for controlling and monitoring the temperature insides the EOS(Electro-Optic System) and gathering all the analog telemetry from all the MSC sub-units, etc. Particularly, the designed heater controller has the special mode of "duty cycle" in addition to normal closed loop control mode as usual. THTM controls heaters in open loop according to on/off set time designed through analysis in duty cycle mode in case of all thermistor failure whereas it controls heaters by comparing the thermistor value to temperature based on closed loop in normal mode. And a designed THTM provides a checking and protection method against the failure in thermal control command using the test pulse in command itself.

  • PDF

Impact Assessment of COVID-19 on PM2.5 in Busan -Comparative Study in Busan vs. Seoul Metropolitan Area(III) (부산지역 PM2.5의 COVID-19 영향 분석 - 수도권과 비교연구(III))

  • Min-Jun Park;Cheol-Hee Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.4
    • /
    • pp.205-220
    • /
    • 2023
  • In this study, impact of the COVID-19 outbreak on PM2.5 mass and its five chemical components (NH4+, NO3-, SO42-, OC, EC) in Busan was evaluated, and compared with that of Seoul. The study period over the recent three years was sub-divided into two periods: Pre-COVID (2018~2019) and COVID (2020) periods, and the differences in observed annual and monthly variations between the two periods were explored here. The results indicated that annual mean PM2.5 mass concentrations decreased during the COVID period by 16% in Seoul and 29% in Busan, and the satellite-observed annual average of aerosol optical depth (AOD) over the Korean Peninsula also decreased by approximately more than 10% compared with that of the Pre-COVID period. All of the five chemical components decreased but no particular changes were found in their fractions occupied during the COVID period. However, over the Lock-down period (2020-March), the sulfate fraction decreased in Seoul, mostly reflecting the recent Chinese trends of aerosol characteristics, whereas the nitrate fraction considerably decreased in Busan, which was attributable to the local emission changes and their variabilities in Busan. Other meteorological characteristics such as higher frequencies of easterly winds in the Busan area during the COVID period were also discussed in comparison with those in the Seoul area.

MODIS-estimated Microphysical Properties of Clouds Developed in the Presence of Biomass Burning Aerosols (MODIS 관측자료를 이용한 러시아 산불 영향 하에 발달한 구름의 미세 물리적 특성 연구)

  • Kim, Shin-Young;Sohn, Byung-Ju
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.289-298
    • /
    • 2008
  • An algorithm was developed to retrieve both cloud optical thickness and effective particle radius considered the aerosol effect on clouds. This study apply the algorithm of Nakajima and Nakajima (1995) that is used to retrieve cloud optical thickness and effective particle radius from visible, near infrared satellite spectral measurements. To retrieve cloud properties, Look-up table (LUT) was made under different atmospheric conditions by using a radiative transfer model. Especially the vertical distribution of aerosol is based on a tropospheric aerosol profile in radiative transfer model. In the case study, we selected the extensive forest fire occurred in Russia in May 2003. The aerosol released from this fire may be transported to Korea. Cloud properties obtained from these distinct atmospheric situations are analysed in terms of their possible changes due to the interactions of the clouds with the aerosol particle plumes. Cloud properties over the East sea at this time was retrieved using new algorithm. The algorithm is applied to measurements from the MODerate Resolution Imaging Spectrometer (MODIS) onboard the Terra spacecrafts. As a result, cloud effective particle radius was decreased and cloud optical thickness was increased during aerosol event. Specially, cloud effective particle radius is hardly greater than $20{\mu}m$ when aerosol particles were present over the East Sea. Clouds developing in the aerosol event tend to have more numerous but smaller droplets.

Vulnerability Assessment for Fine Particulate Matter (PM2.5) in the Schools of the Seoul Metropolitan Area, Korea: Part I - Predicting Daily PM2.5 Concentrations (인공지능을 이용한 수도권 학교 미세먼지 취약성 평가: Part I - 미세먼지 예측 모델링)

  • Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1881-1890
    • /
    • 2021
  • Particulate matter (PM) affects the human, ecosystems, and weather. Motorized vehicles and combustion generate fine particulate matter (PM2.5), which can contain toxic substances and, therefore, requires systematic management. Consequently, it is important to monitor and predict PM2.5 concentrations, especially in large cities with dense populations and infrastructures. This study aimed to predict PM2.5 concentrations in large cities using meteorological and chemical variables as well as satellite-based aerosol optical depth. For PM2.5 concentrations prediction, a random forest (RF) model showing excellent performance in PM concentrations prediction among machine learning models was selected. Based on the performance indicators R2, RMSE, MAE, and MAPE with training accuracies of 0.97, 3.09, 2.18, and 13.31 and testing accuracies of 0.82, 6.03, 4.36, and 25.79 for R2, RMSE, MAE, and MAPE, respectively. The variables used in this study showed high correlation to PM2.5 concentrations. Therefore, we conclude that these variables can be used in a random forest model to generate reliable PM2.5 concentrations predictions, which can then be used to assess the vulnerability of schools to PM2.5.

DEVELOPMENT OF A LYMAN-α IMAGING SOLAR TELESCOPE FOR THE SATELLITE (인공위성 탑재용 자외선 태양카메라(LIST) 개발)

  • Jang, M.;Oh, H.S.;Rim, C.S.;Park, J.S.;Kim, J.S.;Son, D.;Lee, H.S.;Kim, S.J.;Lee, D.H.;Kim, S.S.;Kim, K.H.
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.3
    • /
    • pp.329-352
    • /
    • 2005
  • Long term observations of full-disk Lyman-o irradiance have been made by the instruments on various satellites. In addition, several sounding rockets dating back to the 1950s and up through the present have measured the $Lyman-{\alpha}$ irradiance. Previous full disk $Lyman-{\alpha}$ images of the sun have been very interesting and useful scientifically, but have been only five-minute 'snapshots' obtained on sounding rocket flights. All of these observations to date have been snapshots, with no time resolution to observe changes in the chromospheric structure as a result of the evolving magnetic field, and its effect on the Lyman-o intensity. The $Lyman-{\alpha}$ Imaging Solar Telescope(LIST) can provide a unique opportunity for the study of the sun in the $Lyman-{\alpha}$ region with the high time and spatial resolution for the first time. Up to the 2nd year development, the preliminary design of the optics, mechanical structure and electronics system has been completed. Also the mechanical structure analysis, thermal analysis were performed and the material for the structure was chosen as a result of these analyses. And the test plan and the verification matrix were decided. The operation systems, technical and scientific operation, were studied and finally decided. Those are the technical operation, mechanical working modes for the observation and safety, the scientific operation and the process of the acquired data. The basic techniques acquired through the development of satellite based solar telescope are essential for the construction of space environment forecast system in the future. The techniques which we developed through this study, like mechanical, optical and data processing techniques, could be applied extensively not only to the process of the future production of flight models of this kind, but also to the related industries. Also, we can utilize the scientific achievements which are obtained throughout the project And these can be utilized to build a high resolution photometric detectors for military and commercial purposes. It is also believed that we will be able to apply several acquired techniques for the development of the Korean satellite projects in the future.

Review of Remote Sensing Applicability for Monitoring Marine Microplastics (해양 미세플라스틱 모니터링을 위한 원격탐사 적용 가능성 검토)

  • Park, Suhyeon;Kim, Changmin;Jeong, Seongwoo;Jang, Seonggan;Kim, Subeen;Ha, Taejung;Han, Kyung-soo;Yang, Minjune
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.835-850
    • /
    • 2022
  • Microplastics have arisen as a worldwide environmental concern, becoming ubiquitous in all marine compartments, and various researches on monitoring marine microplastics are being actively conducted worldwide. Recently, application of a remote detection technology that enables large-scale real-time observation to marine plastic monitoring has been conducted overseas. However, in South Korea, there is little information linking remote detection to marine microplastics and some field studies have demonstrated remote detection of medium- and large-sized marine plastics. This study introduces research cases with remote detection of marine plastics in South Korea and overseas, investigates potential feasibility of using the remote detection technology to marine microplastic monitoring, and suggests some future works to monitor marine microplastics with the remote detection.

An Improved Validation Technique for the Temporal Discrepancy when Estimated Solar Surface Insolation Compare with Ground-based Pyranometer: MTSAT-1R Data use (표면도달일사량 검증 시 발생하는 시간 불일치 조정을 통한 정확한 일사량 검증: MTSAT-1R 자료 이용)

  • Yeom, Jong-Min;Han, Kyung-Soo;Lee, Chang-Suk;Kim, Do-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.605-612
    • /
    • 2008
  • In this study, we estimate solar surface insolation (SSI) by using physical methods with MTSAT-1R data. SSI is regarded as crucial parameter when interpreting solar-earth energy system, climate change, and agricultural production predict application. Most of SSI estimation model mainly uses ground based-measurement such as pyranometer to tune the constructed model and to validate retrieved SSI data from optical channels. When compared estimated SSI with pyranometer measurements, there are some systemic differences between those instruments. The pyranometer data observed upward-looking hemispherical solid angle and distributed hourly measurements data which are averaged every 2 minute instantaneous observation. Whereas MTSAT-1R channels data are taken instantaneously images at fixed measurement time over scan area, and are pixel-based observation with a much smaller solid angle view. Those temporal discrepancies result from systemic differences can induce validation error. In this study, we adjust hour when estimate SSI to improve the retrieved accurate SSI.

Study on the Feasibility of Space Weapon Development Utilizing Active Debris Removal Techniques and Understanding of Space Maneuver Warfare (우주 쓰레기 제거기술을 활용한 우주무기 개발 개연성 고찰 및 우주기동전(Space Maneuver Warfare)의 이해)

  • Seonghwan Choi
    • Journal of Space Technology and Applications
    • /
    • v.3 no.2
    • /
    • pp.165-198
    • /
    • 2023
  • According to the studies recently published through advanced maui optical and space surveillance technologies (AMOS) Conference 2021, LEO conjunction assessment revolves around not on operating satellites but space debris such as rocket bodies and non-operational satellites, hence suggesting a solution through space traffic management. Against this backdrop, the issue of active debris removal (ADR) has emerged to the surface as an international challenge throughout the globe. In step with this, the United Nations General Assembly approved a resolution calling on nations to halt tests of direct-ascent anti-satellites, to which U.S. and twelve other nations included Republic of Korea were original signatories. ADR techniques are also actively being researched in the civil sector, and these commercial services, if successfully developed, could possibly be utilized for military use as well. As such, this paper will help readers' understanding for the current status of ADR techniques, space threat assessments, on-orbit rendezvous and proximity operations by looking at previous cases, reflecting on space-faring nations' ADR techniques and its development probability in relation to space weapons. As a conclusion, this study will propose the needs of developing space propulsion system by understanding Space Maneuver Warfare in preparation for the future space battlefield.

An Experiment for Surface Soil Moisture Mapping Using Sentinel-1 and Sentinel-2 Image on Google Earth Engine (Google Earth Engine 제공 Sentinel-1과 Sentinel-2 영상을 이용한 지표 토양수분도 제작 실험)

  • Jihyun Lee ;Kwangseob Kim;Kiwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.599-608
    • /
    • 2023
  • The increasing interest in soil moisture data using satellite data for applications of hydrology, meteorology, and agriculture has led to the development of methods for generating soil moisture maps of variable resolution. This study demonstrated the capability of generating soil moisture maps using Sentinel-1 and Sentinel-2 data provided by Google Earth Engine (GEE). The soil moisture map was derived using synthetic aperture radar (SAR) image and optical image. SAR data provided by the Sentinel-1 analysis ready data in GEE was applied with normalized difference vegetation index (NDVI) based on Sentinel-2 and Environmental Systems Research Institute (ESRI)-based Land Cover map. This study produced a soil moisture map in the research area of Victoria, Australia and compared it with field measurements obtained from a previous study. As for the validation of the applied method's result accuracy, the comparative experimental results showed a meaningful range of consistency as 4-10%p between the values obtained using the algorithm applied in this study and the field-based ones, and they also showed very high consistency with satellite-based soil moisture data as 0.5-2%p. Therefore, public open data provided by GEE and the algorithm applied in this study can be used for high-resolution soil moisture mapping to represent regional land surface characteristics.