• 제목/요약/키워드: Satellite Launch Vehicle

검색결과 219건 처리시간 0.033초

위성발사체 궤도 및 순간낙하점 추정을 위한 융합필터 (Fusion Filter for the Trajectory and Instantaneous Impact Point Estimation of a Satellite Launch Vehicle)

  • 류성숙;김정래;송용규;고정환;심형석
    • 한국항행학회논문지
    • /
    • 제12권4호
    • /
    • pp.295-303
    • /
    • 2008
  • 고속으로 장거리를 비행하는 위성발사체는 고장 시 큰 위험을 줄 수 있으므로, 비행 궤도를 감시하고 고장여부를 판단하는 비행안전 시스템의 운용이 필수적이다. 비행안전 시스템에 적용되는 필터는 일반적인 위치추적 필터와는 달리 필터 정확성 보다는 신뢰성이 우선 시 되어야 하고, 정확한 순간낙하점 추정을 위해서는 궤도 위치뿐만 아니라 속도 역시 중요하게 여겨져야 한다. 본 논문에서는 KSLV-I 위성발사체 발사 시 운용되는 추적 센서를 적용하는 융합필터를 구성하고 궤도 및 순간낙하점을 계산하여 구성된 필터의 성능을 시험하였다.

  • PDF

Korea Pathfinder Lunar Orbiter (KPLO) Operation: From Design to Initial Results

  • Moon-Jin Jeon;Young-Ho Cho;Eunhyeuk Kim;Dong-Gyu Kim;Young-Joo Song;SeungBum Hong;Jonghee Bae;Jun Bang;Jo Ryeong Yim;Dae-Kwan Kim
    • Journal of Astronomy and Space Sciences
    • /
    • 제41권1호
    • /
    • pp.43-60
    • /
    • 2024
  • Korea Pathfinder Lunar Orbiter (KPLO) is South Korea's first space exploration mission, developed by the Korea Aerospace Research Institute. It aims to develop technologies for lunar exploration, explore lunar science, and test new technologies. KPLO was launched on August 5, 2022, by a Falcon-9 launch vehicle from cape canaveral space force station (CCSFS) in the United States and placed on a ballistic lunar transfer (BLT) trajectory. A total of four trajectory correction maneuvers were performed during the approximately 4.5-month trans-lunar cruise phase to reach the Moon. Starting with the first lunar orbit insertion (LOI) maneuver on December 16, the spacecraft performed a total of three maneuvers before arriving at the lunar mission orbit, at an altitude of 100 kilometers, on December 27, 2022. After entering lunar orbit, the commissioning phase validated the operation of the mission mode, in which the payload is oriented toward the center of the Moon. After completing about one month of commissioning, normal mission operations began, and each payload successfully performed its planned mission. All of the spacecraft operations that KPLO performs from launch to normal operations were designed through the system operations design process. This includes operations that are automatically initiated post-separation from the launch vehicle, as well as those in lunar transfer orbit and lunar mission orbit. Key operational procedures such as the spacecraft's initial checkout, trajectory correction maneuvers, LOI, and commissioning were developed during the early operation preparation phase. These procedures were executed effectively during both the early and normal operation phases. The successful execution of these operations confirms the robust verification of the system operation.

일본의 정지궤도위성 개발에 관한 조사

  • 이호형
    • 항공우주기술
    • /
    • 제3권1호
    • /
    • pp.134-142
    • /
    • 2004
  • 본 논문은 일본의 정지궤도 위성개발에 대한 조사 보고서이다. 1950년대부터 일본정부의 의욕적인 우주개발 덕분에, 일본은 많은 어려움을 극복하면서 1970년 일본 최초의 위성인 오수미를 발사하여 세계에서 네 번째로 자국 발사체로 위성을 성공적으로 발사하는 국가가 되었다. 그 이후 지속적인 기술축적이 이루어져 우주개발 선진국으로서의 위치를 유지하고 있다. 일본은 2003년 말까지 18기의 과학위성, 7기의 기술시험위성, 5기의 기상위성, 및 수많은 통신방송위성 등을 포함하여 총 97기의 위성을 궤도에 진입시킴으로써, 세계에서 3번째로 많은 위성 보유국이 되었다. MELCO사가 2003년 6월 Optus C1위성을 호주의 Sing Tel Optus사에 성공적으로 납품함으로써, 일본은 국제 정지궤도위성 시장에서 경쟁할 능력을 갖추었다.

  • PDF

무궁화위성 3호 발사환경시험 결과분석 (Launch Environment Test Results of Koreasat-3)

  • 양군호;최성봉;김원철;김성중;황보한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1252-1258
    • /
    • 2000
  • Koreasat-3 was successfully launched by an Ariane IV launch vehicle on September 5, 1999. Although the primary purpose of the satellite is to replace Koreasat-l, it also can extend its communication service coverage over the Asia-Pacific region. A spacecraft is subjected to severe dynamic loads during launch period. To verify the safety of spacecraft under the launch environment, dynamic tests should be performed such as sine sweep, acoustic and separation shock tests. This paper presents the launch environment test results of Koreasat-3. A total of 188 acceleration responses was measured and compared with the design requirements of components and spacecraft. Dynamic characteristic change was also investigated by comparing between low-level pre/post vibration results. From the review of test results, it is concluded that Koreasat-3 was designed and manufactured with the margin of safety enough to survive the launch loads of Ariane IV.

  • PDF

KSLV-I 페어링 공력 가열 시험 (Aerodynamic Heating Test of Payload Fairing of KSLV-I)

  • 최상호;김성룡;김인선
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.448-451
    • /
    • 2008
  • KARI is developing a satellite launch vehicle that is called KSLV(Korea Space Launch Vehicle)-I. During the flight, launch vehicles are exposed to aerodynamic heating conditions while flying at high Mach numbers in the atmosphere. KARI constructed Aerodynamic Thermal Simulation Facility to simulate aerodynamic heating on the ground. ATSF is a facility that can simulate given temperature profile using about 4,000 halogen heaters on fairing model. Aerodynamic heating profile is got from result of thermal analysis using MINIVER, Thermal Desktop, and SINDA/FLUINT. Aerodynamic heating test of fairing of KSLV-I was done using engineering model of payload fairing and Aerodynamic Thermal Simulation Facility. It was found that thermal analytic results show good agreement with aerodynamic heating test results within 6$^{\circ}$C at fairing inner surface. Also it was confirmed that maximum temperature of fairing nose-cone inner surface during flight is lower than allowable temperature limit.

  • PDF

Shock Response Prediction of a Low Altitude Earth Observation Satellite During Launch Vehicle Separation

  • Lee, Dae-Oen;Han, Jae-Hung;Jang, Hae-Won;Woo, Sung-Hyun;Kim, Kyung-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권1호
    • /
    • pp.49-57
    • /
    • 2010
  • Several pyrotechnic devices are employed over the course of satellite's missions, generally for the separation of structural subsystems and deployment of appendages. Firing of pyrotechnic devices results in impulsive loads characterized by high peak acceleration and high frequency content which can cause failures of various flight hardware elements and small components. Thus, accurate prediction of acceleration level in various components of spacecraft due to pyrotechnic devices is important. In this paper, two methods for pyroshock prediction, an empirical model and statistical energy analysis in conjunction with virtual mode synthesis, are applied to predict shock response of a low altitude earth observation satellite during launch vehicle separation. The predicted results are then evaluated through comparison with the shock test results.

발사환경에 대한 위성 전장품의 구조진동 해석 (Structural Vibration Analysis of Electronic Equipment for Satellite under Launch Environments)

  • 정일호;박태원;한상원;서종휘;김성훈
    • 한국정밀공학회지
    • /
    • 제21권8호
    • /
    • pp.120-128
    • /
    • 2004
  • The impulse between launch vehicle and atmosphere can generate a lot of noise and vibration during the process of launching a satellite. Structurally, the electronic equipment of a satellite consists of an aluminum case containing PCB. Each PCB has resistors and IC. Noise and vibration of the wide frequency band are transferred to the inside of fairing, subsequently creating vibration of the electronic equipment of the satellite. In this situation, random vibration can cause malfunctioning of the electronic equipment of the device. Furthermore, when the frequency of random vibration meets with natural frequency of PCB, fatigue fracture may occur in the part of solder joint. The launching environment, thus, needs to be carefully considered when designing the electronic equipment of a satellite. In general, the safety of the electronic equipment is supposed to be related to the natural frequency, shapes of mode and dynamic deflection of PCB in the electronic equipment. Structural vibration analysis of PCB and its electronic components can be performed using either FEM or vibration test. In this study, the natural frequency and dynamic deflection of PCB are measured by FEM, and the safety of the electronic components of PCB is evaluated according to the results. This study presents a unique method for finite element modeling and analysis of PCB and its electronic components. The results of FEA are verified by vibration test. The method proposed herein may be applicable to various designs ranging from the electronic equipments of a satellite to home electronics.

FLIGHT SOFTWARE DEVELOPMENT FOR THE KODSAT

  • Choi Eun-Jung;Park Suk-June;Kang Suk-Joo;Seo Min-Suk;Chae Jang-Soo;Oh Tae-Sik
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.364-367
    • /
    • 2004
  • This paper presents the flight software of KoDSat (KSLV-l Demonstration Satellite) which performs demonstrating the KSLV-l (Korea Space Launch Vehicle-l)'s satellite launch capability. The KoDSat Flight Software executes in a single-processor, multi-function flight computer on the spacecraft, the OBC (On Board Computer). The flight software running on the single processor is responsible for all real-time processing associated with: processor startup and hardware initialization, task scheduling, RS422 handling function, command and data handling including uplink command and down-link telemetry, attitude determination and control, battery state of charge monitoring and control, thermal control processing.

  • PDF

음향 가진에 의한 위성 안테나의 진동해석 (Vibration Analysis of Composite Satellite Antenna by Acoustic Excitation)

  • 최항석;차호철;조영훈;함명래;박종흥
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.123-126
    • /
    • 2002
  • Acoustic vibration analysis has been performed using random vibration analysis module of MSC/NASTRAN to evaluate the safety of the composite satellite antenna structure under the acoustic pressure from the launch vehicle. It was found that maximum $3\sigma$ stress by acoustic excitation was less than allowable stress.

  • PDF

효율적인 다물체 동역학 해법 및 인공위성 전개장치에의 응용 (An efficient solution for multibody dynamics and application to satellite deployment mechanism)

  • 이기수;김진철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.680-685
    • /
    • 1992
  • Solar arrays and antennas of the satellite are usually stowed within the dimensions of the launch-vehicle fairing and deployed in the orbit. To solve such multibody dynamic problems, differential equations and algebraic equations are simultaneously solved, and special solution techniques are required. In this paper, Lagrange multipliers associated with the constraints are iteratively computed by monotonically reducing an appropriately defined constraint error vector, and the resulting equation of motion is solved by a well-established ODE technique. Defomable bodies as well as rigid bodies are treated, and applications to satellite solar arrays are explained.

  • PDF