• Title/Summary/Keyword: Satellite Imagery IKONOS

Search Result 91, Processing Time 0.025 seconds

Computation of 3D Coordinates from Stereo Images with RPCs (RPC를 이용한 Stereo 영상으로부터의 3차원 좌표 추출)

  • Kim Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.2
    • /
    • pp.135-143
    • /
    • 2005
  • RPC(Rational Polynomial Camera) models have become the replacement model of choice for a number of high resolution satellite imagery providers. RPCs(Rational Polynomial Coefficients) provide a compact accurate representation of the ground to image geometry, allowing users to perform full photogrammetric processing of satellite imagery including block adjustment, 3D feature extraction and orthorectification. This paper presents an algorithm for 3D feature extraction using downhill simpler method which requires only function evaluations, not derivatives. The algorithm was implemented as an executable software program and tested using stereo IKONOS images of Seoul city. The results showed that the proposed algorithm was fast and accurate enough to be used as a practical method for the 3D feature extraction from stereo images with RPCs.

Exterior Orientation Parameters Determination from Satellite Imagery RPC Camera Model (위성영상 RPC 카메라 모델로부터 외부표정요소 결정)

  • Lee Hyo Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.1
    • /
    • pp.59-67
    • /
    • 2005
  • This paper proposes method for determining exterior orientation parameters (EOPs) from the RPC mathematical camera model of the satellite image. SPOT satellite stereo pair is pre-tested using the proposed method. As results that, geopositioning errors are similar with those of the original EOPs. Differences between EOPs determined from the RPC and original EOPs were small. IKONOS Geo-level stereo pair is tested by the proposed method. Results of this method are compared with those of the RPC block adjustment method which have been verified in reported studies. Consequently, the proposed method showed accuracy similar to the RPC block adjustment method. The digital elevation models (DEMs) of sample area acquired by the two method almost did not have a difference.

Automatic Determination of Matching Window Size Using Histogram of Gradient (그레디언트 히스토그램을 이용한 정합 창틀 크기의 자동적인 결정)

  • Ye, Chul-Soo;Moon, Chang-Gi
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.2
    • /
    • pp.113-117
    • /
    • 2007
  • In this paper, we propose a new method for determining automatically the size of the matching window using histogram of the gradient in order to improve the performance of stereo matching using one-meter resolution satellite imagery. For each pixel, we generate Flatness Index Image by calculating the mean value of the vertical or horizontal intensity gradients of the 4-neighbors of every pixel in the entire image. The edge pixel has high flatness index value, while the non-edge pixel has low flatness index value. By using the histogram of the Flatness Index Image, we find a flatness threshold value to determine whether a pixel is edge pixel or non-edge pixel. If a pixel has higher flatness index value than the flatness threshold value, we classify the pixel into edge pixel, otherwise we classify the pixel into non-edge pixel. If the ratio of the number of non-edge pixels in initial matching window is low, then we consider the pixel to be in homogeneous region and enlarge the size of the matching window We repeat this process until the size of matching window reaches to a maximum size. In the experiment, we used IKONOS satellite stereo imagery and obtained more improved matching results than the matching method using fixed matching window size.

Land Use Classification in Very High Resolution Imagery by Data Fusion (영상 융합을 통한 고해상도 위성 영상의 토지 피복 분류)

  • Seo, Min-Ho;Han, Dong-Yeob;Kim, Yong-Il
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.17-22
    • /
    • 2005
  • Generally, pixel-based classification, utilize the similarity of distances between the pixel values in feature space, is applied to land use mapping using satellite remote sensing data. But this method is Improper to be applied to the very high resolution satellite data (VHRS) due to complexity of the spatial structure and the variety of pixel values. In this paper, we performed the hierarchical classification of VHRS imagery by data fusion, which integrated LiDAR height and intensity information. MLC and ISODATA methods were applied to IKONOS-2 imagery with and without LiDAR data prior to the hierarchical classification, and then results was evaluated. In conclusion, the hierarchical method with LiDAR data was the superior than others in VHRS imagery and both MLC and ISODATA classification with LiDAR data were better than without.

  • PDF

A METHOD FOR ADJUSTING ADAPTIVELY THE WEIGHT OF FEATURE IN MULTI-DIMENSIONAL FEATURE VECTOR MATCHING

  • Ye, Chul-Soo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.772-775
    • /
    • 2006
  • Muilti-dimensional feature vector matching algorithm uses multiple features such as intensity, gradient, variance, first or second derivative of a pixel to find correspondence pixels in stereo images. In this paper, we proposed a new method for adjusting automatically the weight of feature in multi-dimensional feature vector matching considering sharpeness of a pixel in feature vector distance curve. The sharpeness consists of minimum and maximum vector distances of a small window mask. In the experiment we used IKONOS satellite stereo imagery and obtained accurate matching results comparable to the manual weight-adjusting method.

  • PDF

A stereo matching method using minimum feature vector distance and disparity map (최소 특징 벡터 거리와 변이지도를 이용한 스테레오 정합 기법)

  • Ye, Chul-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.403-404
    • /
    • 2006
  • In this paper, we proposed muli-dimensional feature vector matching method combined with disparity smoothness constraint. The smoothness constraint was calculated using the difference between disparity of center pixel and those of 4-neighbor pixels. By applying proposed algorithm to IKONOS satellite stereo imagery, we obtained robust stereo matching result in urban areas.

  • PDF

Accuracy Evaluation of Supervised Classification about IKONOS Imagery using Mixed Pixels (혼합화소를 이용한 IKONOS 영상의 감독분류정확도 평가)

  • Lee, Jong-Sin;Kim, Min-Gyu;Park, Joon-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2751-2756
    • /
    • 2012
  • Selection of training set influences the classification accuracy in supervised classification using satellite imagery. Generally, if pure pixels which character of training set is clear were selected, whole accuracy is high while if mixed pixels were selected, accuracy is decreased because of low-resolution imagery or unclear distinguishment. However, it is too difficult to choose the pure pixels as training set actually. Accordingly, this study should be suggested the suitable classification method in case of mixed pixels choice. To achieve this, a few pure pixels were chosen as training set and classification accuracy was calculated which was compared with classification result using an equal number of mixed pixels. As a result, accuracy of SVM was the highest among the classification method using mixed pixels and it was a relatively small difference with the result of classification using pure pixels. Therefore, imagery classification using SVM is most suitable in the mixed area of construction and green because it is high possibility to choose mixed pixels as training set.

RPC MODEL FOR ORTHORECTIFYING VHRS IMAGE

  • Ke, Luong Chinh
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.631-634
    • /
    • 2006
  • Three main important sources for establishing GIS are the orthomap in scale 1:5 000 with Ground Sampling Distance of 0,5m; DEM/DTM data with height error of ${\pm}$1,0m and topographic map in scale 1: 10 000. The new era with Very High Resolution Satellite (VHRS) images as IKONOS, QuickBird, EROS, OrbView and other ones having Ground Sampling Distance (GSD) even lower than 1m has been in potential for producing orthomap in large scale 1:5 000, to update existing maps, to compile general-purpose or thematic maps and for GIS. The accuracy of orthomap generated from VHRS image affects strongly on GIS reliability. Nevertheless, orthomap accuracy taken from VHRS image is at first dependent on chosen sensor geometrical models. This paper presents, at fist, theoretical basic of the Rational Polynomial Coefficient (RPC) model installed in the commercial ImageStation Systems, realized for orthorectifying VHRS images. The RPC model of VHRS image is a replacement camera mode that represents the indirect relation between terrain and its image acquired on the flight orbit. At the end of this paper the practical accuracies of IKONOS and QuickBird image orthorectified by RPC model on Canadian PCI Geomatica System have been presented. They are important indication for practical application of producing digital orthomaps.

  • PDF

Extraction of Non-Point Pollution Using Satellite Imagery Data

  • Lee, Sang-Ik;Lee, Chong-Soo;Choi, Yun-Soo;Koh, June-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.96-99
    • /
    • 2003
  • Land cover map is a typical GIS database which shows the Earth's physical surface differentiated by standardized homogeneous land cover types. Satellite images acquired by Landsat TM were primarily used to produce a land cover map of 7 land cover classes; however, it now becomes to produce a more accurate land cover classification dataset of 23 classes thanks to higher resolution satellite images, such as SPOT-5 and IKONOS. The use of the newly produced high resolution land cover map of 23 classes for such activities to estimate non-point sources of pollution like water pollution modeling and atmospheric dispersion modeling is expected to result a higher level of accuracy and validity in various environmental monitoring results. The estimation of pollution from non-point sources using GIS-based modeling with land cover dataset shows fairly accurate and consistent results.

  • PDF

Comparison Among Sensor Modeling Methods in High-Resolution Satellite Imagery (고해상도 위성영상의 센서모형과 방법 비교)

  • Kim, Eui Myoung;Lee, Suk Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6D
    • /
    • pp.1025-1032
    • /
    • 2006
  • Sensor modeling of high-resolution satellites is a prerequisite procedure for mapping and GIS applications. Sensor models, describing the geometric relationship between scene and object, are divided into two main categories, which are rigorous and approximate sensor models. A rigorous model is based on the actual geometry of the image formation process, involving internal and external characteristics of the implemented sensor. However, approximate models require neither a comprehensive understanding of imaging geometry nor the internal and external characteristics of the imaging sensor, which has gathered a great interest within photogrammetric communities. This paper described a comparison between rigorous and various approximate sensor models that have been used to determine three-dimensional positions, and proposed the appropriate sensor model in terms of the satellite imagery usage. Through the case study of using IKONOS satellite scenes, rigorous and approximate sensor models have been compared and evaluated for the positional accuracy in terms of acquirable number of ground controls. Bias compensated RFM(Rational Function Model) turned out to be the best among compared approximate sensor models, both modified parallel projection and parallel-perspective model were able to be modelled with a small number of controls. Also affine transformation, one of the approximate sensor models, can be used to determine the planimetric position of high-resolution satellites and perform image registration between scenes.