• Title/Summary/Keyword: Satellite Image Information

Search Result 1,101, Processing Time 0.026 seconds

GCP(GROUND CONTROL POINT) FOR AUTOMATION OF THE HIGH RESOLUTION SATELLITE IMAGE REVISION

  • Jo, Myung-Hee;Jung, Yun-Jae
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.219-222
    • /
    • 2007
  • Today, use of high resolution satellite image with at least 1m resolution is expanding into many more areas including forest, river way, city, seashore and so forth for disaster prevention. Interest in this medium is increasing among the general public due to the roll-out to the private sector as Google earth, Virtual Earth and so forth. However, pre-processing process that revises the geometrical distortion that result at the time of photographing is required in order to use high resolution satellite image. The purpose of this research is to search the most accurate GCP(Ground Control Point) information acquisition method that is used for the revision of high resolution satellite image's geometrical distortion through automated processing. Through this, it is possible to contribute to increasing the level of accuracy at the time of high resolution satellite image revision and to secure promptness.

  • PDF

Development of Image Processing Software for Satellite Data

  • Chi, Kwang-Hoon;Suh, Jae-Young;Han, Jong-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.361-369
    • /
    • 1998
  • Recently, the improvement of on-board satellite sensors covering hyperspectral image sensors, high spatial resolution sensors provide data on earth in diverse aspect. The application field relating remotely sensed data also varies depending on what type of job one wants. The various resolution of sensors from low to extremely high is also available on the market with a user defined specific location. The expense to purchase remote sensed data is going down compare to the cost it need past few years ago in terms of research or private use. Now, the satellite remote sensed data is used on the field of forecasting, forestry, agriculture, urban reconstruction, geology, or other research field in order to extract meaningful information by applying special techniques of image processing. There are many image processing packages available worldwide and one common aspect is that they are expensive. There need to be a advanced satellite data processing package for people who can not afford commercial packages to apply special remote sensing techniques on their data and produce valued-added product. The study was carried out with the purpose of developing a special satellite data processing package which covers almost every satellite produced data with normal image processing functions and also special functions needed on specific research field with friendly graphical user interface (GUI). And for the people with any background of remote sensing with windows platform.

  • PDF

LOSSY JPEG CHARACTERISTIC ANALYSIS OF METEOROLOGICAL SATELLITE IMAGE

  • Kim, Tae-Hoon;Jeon, Bong-Ki;Ahn, Sang-Il;Kim, Tae-Young
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.282-285
    • /
    • 2006
  • This paper analyzed the characteristics of the Lossy JPEG of the meteorological satellite image, and analyzed the quality of the Lossy JPEG compression, which is proper for the LRIT(Low Rate Information Transmission) to be serviced to the SDUS(Small-scale Data Utilization Station) system of the COMS(Communication, Oceans, Meteorological Satellite). Since COMS is to start running after 2008, we collected the data of the MTSAT-1R(Multi-functional Transport Satellite -1R) for analysis, and after forming the original image to be used to LRIT by each channel and time zone of the satellite image data, we set the different quality with the Lossy JPEG compression, and compressed the original data. For the characteristic analysis of the Lossy JPEG, we measured PSNR(Peak Signal to Noise Rate), compression rate and the time spent in compression following each quality of Lossy JPEG compression. As a result of the analysis of the satellite image data of the MTSAT-1R, the ideal quality of the Lossy JPEG compression was found to be 90% in the VIS Channel, 85% in the IR1 Channel, 80% in the IR2 Channel, 90% in the IR3 Channel and 90% in the IR4 Channel.

  • PDF

Cloud-based Satellite Image Processing Service by Open Source Stack: A KARI Case

  • Lee, Kiwon;Kang, Sanggoo;Kim, Kwangseob;Chae, Tae-Byeong
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.339-350
    • /
    • 2017
  • In recent, cloud computing paradigm and open source as a huge trend in the Information Communication Technology (ICT) are widely applied, being closely interrelated to each other in the various applications. The integrated services by both technologies is generally regarded as one of a prospective web-based business models impacting the concerned industries. In spite of progressing those technologies, there are a few application cases in the geo-based application domains. The purpose of this study is to develop a cloud-based service system for satellite image processing based on the pure and full open source. On the OpenStack, cloud computing open source, virtual servers for system management by open source stack and image processing functionalities provided by OTB have been built or constructed. In this stage, practical image processing functions for KOMPSAT within this service system are thresholding segmentation, pan-sharpening with multi-resolution image sets, change detection with paired image sets. This is the first case in which a government-supporting space science institution provides cloud-based services for satellite image processing functionalities based on pure open source stack. It is expected that this implemented system can expand with further image processing algorithms using public and open data sets.

Similar Satellite Image Search using SIFT (SIFT를 이용한 유사 위성 영상 검색)

  • Kim, Jung-Bum;Chung, Chin-Wan;Kim, Deok-Hwan;Kim, Sang-Hee;Lee, Seok-Lyong
    • Journal of KIISE:Databases
    • /
    • v.35 no.5
    • /
    • pp.379-390
    • /
    • 2008
  • Due to the increase of the amount of image data, the demand for searching similar images is continuously increasing. Therefore, many researches about the content-based image retrieval (CBIR) are conducted to search similar images effectively. In CBIR, it uses image contents such as color, shape, and texture for more effective retrieval. However, when we apply CBIR to satellite images which are complex and pose the difficulty in using color information, we can have trouble to get a good retrieval result. Since it is difficult to use color information of satellite images, we need image segmentation to use shape information by separating the shape of an object in a satellite image. However, because satellite images are complex, image segmentation is hard and poor image segmentation results in poor retrieval results. In this paper, we propose a new approach to search similar images without image segmentation for satellite images. To do a similarity search without image segmentation, we define a similarity of an image by considering SIFT keypoint descriptors which doesn't require image segmentation. Experimental results show that the proposed approach more effectively searches similar satellite images which are complex and pose the difficulty in using color information.

Performance Analysis for Compression of Satellite Image Data using the Wavelet Transform (웨이브렛을 이용한 고해상도 인공위성 영상데이터의 압축에 관한 성능분석)

  • 이주원;김영일;이건기;안기원
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.6
    • /
    • pp.980-985
    • /
    • 2002
  • In this paper, we analyzed satellite image with a high resolution compression performance. We need much time in a fast processing on vast satellite image pixel data. On compressing and decompressing, we should keep the information about road, building, forest, etc. In conclusion, we did analyze and compare the performance of compression and decompression for JPEG and WSQ(wavelet scalar quantization) method. As a result, we knew that WSQ was more efficient than JPEG.

Comparison and Analysis of Features between Aerial Photo Image and Satellite Image (항공사진 영상과 위성 영상간의 지형지물 비교.분석)

  • 김감래;김재연
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • Practical use is increasing on the aerial ortho image recently, and much researches for geographic information system build that use high resolution satellite image cause this are progressing. Also many researches that use KOMPSAT-1 satellite image of resolution 6.6m are performing in these days, estimation for between aerial photo and satellite image is needed. In this treatise scanned image of aerial photo, using aerial photo resampling image of resolution equal with KOMPSAT-1 image using aerial photo, and KOMPSAT-1 satellite image use for experimental image making each orthoimage, classified feature for estimate. We evaluated to what level that an separation item could be able to estimate in each orthoimage. As result of estimation analysis, In the classified feature in aerial photo orthoimage with aerial photo resampling image orthoimage is about 61%, KOMPSAT-1 satellite image orthoimage is almost 41% could estimated. Through this investigation estimate, KOMPSAT-1 satellite sue to map updating, geographic information og non-approach area and environment inspect.

Semantic Segmentation Intended Satellite Image Enhancement Method Using Deep Auto Encoders (심층 자동 인코더를 이용한 시맨틱 세그멘테이션용 위성 이미지 향상 방법)

  • K. Dilusha Malintha De Silva;Hyo Jong Lee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.8
    • /
    • pp.243-252
    • /
    • 2023
  • Satellite imageries are at a greatest importance for land cover examining. Numerous studies have been conducted with satellite images and uses semantic segmentation techniques to extract information which has higher altitude viewpoint. The device which is taking these images must employee wireless communication links to send them to receiving ground stations. Wireless communications from a satellite are inevitably affected due to transmission errors. Evidently images which are being transmitted are distorted because of the information loss. Current semantic segmentation techniques are not made for segmenting distorted images. Traditional image enhancement methods have their own limitations when they are used for satellite images enhancement. This paper proposes an auto-encoder based image pre-enhancing method for satellite images. As a distorted satellite images dataset, images received from a real radio transmitter were used. Training process of the proposed auto-encoder was done by letting it learn to produce a proper approximation of the source image which was sent by the image transmitter. Unlike traditional image enhancing methods, the proposed method was able to provide more applicable image to a segmentation model. Results showed that by using the proposed pre-enhancing technique, segmentation results have been greatly improved. Enhancements made to the aerial images are contributed the correct assessment of land resources.

Road Extraction Based on Watershed Segmentation for High Resolution Satellite Images

  • Chang, Li-Yu;Chen, Chi-Farn
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.525-527
    • /
    • 2003
  • Recently, the spatial resolution of earth observation satellites is significantly increased to a few meters. Such high spatial resolution images definitely will provide lots of information for detail-thirsty remote sensing users. However, it is more difficult to develop automated image algorithms for automated image feature extraction and pattern recognition. In this study, we propose a two-stage procedure to extract road information from high resolution satellite images. At first stage, a watershed segmentation technique is developed to classify the image into various regions. Then, a knowledge is built for road and used to extract the road regions. In this study, we use panchromatic and multi-spectral images of the IKONOS satellite as test dataset. The experiment result shows that the proposed technique can generate suitable and meaningful road objects from high spatial resolution satellite images. Apparently, misclassified regions such as parking lots are recognized as road needed further refinement in future research.

  • PDF

A Semi-Automatic Building Modeling System Using a Single Satellite Image (단일 위성 영상 기반의 반자동 건물 모델링 시스템)

  • Oh, Seon-Ho;Jang, Kyung-Ho;Jung, Soon-Ki
    • The KIPS Transactions:PartB
    • /
    • v.16B no.6
    • /
    • pp.451-462
    • /
    • 2009
  • The spread of satellite image increases various services using it. Especially, 3D visualization services of the whole earth such as $Google\;Earth^{TM}$ and $Virtual\;Earth^{TM}$ or 3D GIS services for several cities provide realistic geometry information of buildings and terrain of wide areas. These service can be used in the various fields such as urban planning, improvement of roads, entertainment, military simulation and emergency response. The research about extracting the building and terrain information effectively from the high-resolution satellite image is required. In this paper, presents a system for effective extraction of the building model from a single high-resolution satellite image, after examine requirements for building model extraction. The proposed system utilizes geometric features of satellite image and the geometric relationship among the building, the shadow of the building, the positions of the sun and the satellite to minimize user interaction. Finally, after extracting the 3D building, the fact that effective extraction of the model from single high-resolution satellite will be show.