• Title/Summary/Keyword: Satellite Image Analysis

Search Result 809, Processing Time 0.035 seconds

Relationship Analysis between Lineaments and Epicenters using Hotspot Analysis: The Case of Geochang Region, South Korea (핫스팟 분석을 통한 거창지역의 선구조선과 진앙의 상관관계 분석)

  • Jo, Hyun-Woo;Chi, Kwang-Hoon;Cha, Sungeun;Kim, Eunji;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.469-480
    • /
    • 2017
  • This study aims to understand the relationship between lineaments and epicenters in Geochang region, Gyungsangnam-do, South Korea. An instrumental observation of earthquakes has been started by Korea Meteorological Administration (KMA) since 1978 and there were 6 earthquakes with magnitude ranging 2 to 2.5 in Geochang region from 1978 to 2016. Lineaments were extracted from LANDSAT 8 satellite image and shaded relief map displayed in 3-dimension using Digital Elevation Model (DEM). Then, lineament density was statistically examined by hotspot analysis. Hexagonal grids were generated to perform the analysis because hexagonal pattern expresses lineaments with less discontinuity than square girds, and the size of the grid was selected to minimize a variance of lineament density. Since hotspot analysis measures the extent of clustering with Z score, Z scores computed with lineaments' frequency ($L_f$), length ($L_d$), and intersection ($L_t$) were used to find lineament clusters in the density map. Furthermore, the Z scores were extracted from the epicenters and examined to see the relevance of each density elements to epicenters. As a result, 15 among 18 densities,recorded as 3 elements in 6 epicenters, were higher than 1.65 which is 95% of the standard normal distribution. This indicates that epicenters coincide with high density area. Especially, $L_f$ and $L_t$ had a significant relationship with epicenter, being located in upper 95% of the standard normal distribution, except for one epicenter in $L_t$. This study can be used to identify potential seismic zones by improving the accuracy of expressing lineaments' spatial distribution and analyzing relationship between lineament density and epicenter. However, additional studies in wider study area with more epicenters are recommended to promote the results.

Analysis of the Status of Light Pollution and its Potential Effect on Ecosystem of the Deogyusan National Park (덕유산국립공원 빛공해 현황 및 빛공해가 공원 생태계에 미치는 잠재적 영향 분석)

  • Sung, Chan Yong;Kim, Young-Jae
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.1
    • /
    • pp.63-71
    • /
    • 2020
  • This study characterized the spatial and seasonal patterns of light pollution in the Deogyusan National Park and examined the potential effects of light pollution on ecosystems in the park using light intensities derived from VIIRS (Visible Infrared Imaging Radiometer Suite) DNB (Day and Night Band) nightlight images collected in January and August 2018. Results showed that the Muju Deogyusan resort had the greatest light intensity than other sources of light pollution in the park, and light intensity of the resort was much higher in January than in August, suggesting that artificial lights in ski slopes and facilities were the major source of light pollution in the park. An analysis of an urban-natural light pollution gradient along a neighboring urban area through the inside of the park indicated that light radiated from a light pollution source permeated for up to 1km into the adjacent area and contaminated the edge area of the park. Of the legally protected species whose distributions were reported in literature, four mammals (Martes flavigula, Mustela nivalis, Prionailurus bengalensis, Pteromys volans aluco), two birds (Falco subbuteo, Falco tinnunculus), and nine amphibians and reptiles (Onychodactylus koreanus, Hynobius leechii, Karsenia koreana, Rana dybowskii, Rana huanrenensis, Elaphe dione, Rhabdophis tigrinus, Gloydius ussuriensis, Gloydius saxatilis) inhabited light-polluted areas. Of those species inhabiting light-polluted areas, nocturnal species, such as Prionailurus bengalensis and Pteromys volans aluco, in particular, were vulnerable to light pollution. These results implied that protecting ecosystems from light pollution in national parks requires managing nighttime light in the parks and surrounding areas and making a plan to manage nighttime light pollution by taking into account ecological characteristics of wild animals in the parks.

Detection of Forest Fire Damage from Sentinel-1 SAR Data through the Synergistic Use of Principal Component Analysis and K-means Clustering (Sentinel-1 SAR 영상을 이용한 주성분분석 및 K-means Clustering 기반 산불 탐지)

  • Lee, Jaese;Kim, Woohyeok;Im, Jungho;Kwon, Chunguen;Kim, Sungyong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1373-1387
    • /
    • 2021
  • Forest fire poses a significant threat to the environment and society, affecting carbon cycle and surface energy balance, and resulting in socioeconomic losses. Widely used multi-spectral satellite image-based approaches for burned area detection have a problem in that they do not work under cloudy conditions. Therefore, in this study, Sentinel-1 Synthetic Aperture Radar (SAR) data from Europe Space Agency, which can be collected in all weather conditions, were used to identify forest fire damaged area based on a series of processes including Principal Component Analysis (PCA) and K-means clustering. Four forest fire cases, which occurred in Gangneung·Donghae and Goseong·Sokcho in Gangwon-do of South Korea and two areas in North Korea on April 4, 2019, were examined. The estimated burned areas were evaluated using fire reference data provided by the National Institute of Forest Science (NIFOS) for two forest fire cases in South Korea, and differenced normalized burn ratio (dNBR) for all four cases. The average accuracy using the NIFOS reference data was 86% for the Gangneung·Donghae and Goseong·Sokcho fires. Evaluation using dNBR showed an average accuracy of 84% for all four forest fire cases. It was also confirmed that the stronger the burned intensity, the higher detection the accuracy, and vice versa. Given the advantage of SAR remote sensing, the proposed statistical processing and K-means clustering-based approach can be used to quickly identify forest fire damaged area across the Korean Peninsula, where a cloud cover rate is high and small-scale forest fires frequently occur.

Management Strategies of Ventilation Paths for Improving Thermal Environment - A Case Study of Gimhae, South Korea - (도시 열환경 개선을 위한 바람길 관리 전략 - 김해시를 사례로 -)

  • EUM, Jeong-Hee;SON, Jeong-Min;SEO, Kyeong-Ho;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.1
    • /
    • pp.115-127
    • /
    • 2018
  • This study aims to propose management strategies of ventilation paths for improving urban thermal environments. For this purpose, Gimhae-si in Gyeongsangnamdo was selected as a study area. We analyzed hot spots and cool spots in Gimhae by using Landsat 8 satellite image data and spatial statistical analysis, and finally derived the vulnerable areas to thermal environment. In addition, the characteristics of ventilation paths including wind direction and wind speed were analyzed by using data of the wind resource map provided by Korea Meteorological Administration. As a result, it was found that a lot of hot spots were similar to those with weak wind such as Jinyoung-eup, Jillye-myeon, Juchon-myeon and the downtown area. Based on the analysis, management strategies of ventilation paths in Gimhye were presented as follows. Jinyoung-eup and Jillye-myeon with hot spot areas and week wind areas have a strong possibility that hot spot areas will be extended and strengthened, because industrial areas are being built. Hence, climate-friendly urban and architectural plans considering ventilation paths is required in these areas. In Juchon-myeon, where industrial complexes and agricultural complexes are located, climate-friendly plans are also required because high-rise apartment complexes and an urban development zone are planned, which may induce worse thermal environment in the future. It is expected that a planning of securing and enlarging ventilation paths will be established for climate-friendly urban management. and further the results will be utilized in urban renewal and environmental planning as well as urban basic plans. In addition, we expect that the results can be applied as basic data for climate change adaptation plan and the evaluation system for climate-friendly urban development of Gimhye.

Development and Analysis of COMS AMV Target Tracking Algorithm using Gaussian Cluster Analysis (가우시안 군집분석을 이용한 천리안 위성의 대기운동벡터 표적추적 알고리듬 개발 및 분석)

  • Oh, Yurim;Kim, Jae Hwan;Park, Hyungmin;Baek, Kanghyun
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.531-548
    • /
    • 2015
  • Atmospheric Motion Vector (AMV) from satellite images have shown Slow Speed Bias (SSB) in comparison with rawinsonde. The causes of SSB are originated from tracking, selection, and height assignment error, which is known to be the leading error. However, recent works have shown that height assignment error cannot be fully explained the cause of SSB. This paper attempts a new approach to examine the possibility of SSB reduction of COMS AMV by using a new target tracking algorithm. Tracking error can be caused by averaging of various wind patterns within a target and changing of cloud shape in searching process over time. To overcome this problem, Gaussian Mixture Model (GMM) has been adopted to extract the coldest cluster as target since the shape of such target is less subject to transformation. Then, an image filtering scheme is applied to weigh more on the selected coldest pixels than the other, which makes it easy to track the target. When AMV derived from our algorithm with sum of squared distance method and current COMS are compared with rawindsonde, our products show noticeable improvement over COMS products in mean wind speed by an increase of $2.7ms^{-1}$ and SSB reduction by 29%. However, the statistics regarding the bias show negative impact for mid/low level with our algorithm, and the number of vectors are reduced by 40% relative to COMS. Therefore, further study is required to improve accuracy for mid/low level winds and increase the number of AMV vectors.

A Study of Collaboration between the Census and GIS for Urban Analysis: Modification of Digital Maps and Establishment of Census Tracts (도시분석을 위한 인구주택센서스와 GIS의 연계활용방안 연구: 수치지도의 보완과 센서스트랙의 결정)

  • Koo, Chamun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.2
    • /
    • pp.27-44
    • /
    • 1999
  • Digital maps produced in Korea are various in scale and include a lot of geographic and attribute data. In this study, it is argued that, to reduce the production cost and the difficulties for renewal, it is necessary to establish the already nationally drawn 1:5,000 scale digital maps as the base maps and simplify them as much as the TIGER files in the U.S. The comprehensive data included in the digital maps in Korea are mostly land use information, which are supposed to be established separately from the digital maps. The land use information system could be maintained and updated cheaply and frequently at the local government level. In response to common needs, the land use information could be imported to GIS and used for analyses. As technologies and societies changes, the Census questions and methodologies should be changed for better uses. Along with GIS, the Census would be developed and processed more reliably and efficiently. Also, it is recommended for Korean government to develop the Census Tract and Block Group system. Current Eup, Myon, Dong as basic units for Census information may not be useful or effective for micro level urban analyses and public service planning activities because of their large population and land areas. It is recommended that optimum population of a Census Tract be 5,000 and a Block Groups 1,500, and one Census Tract includes 1~9 Block Groups. It is recommend that Census Tract and Block Group boundary lines be decided flexibly in light of population, physical features, socio-economic attributes, and tradition. For urban analyses using GIS, socio-economic census data, city government's information such as parcel data and building permit data, survey data, and satellite image data could also be used. The existence of Census Tracts and Block Groups as well as GIS could help for the data and methods to be useful for urban analyses and public service provisions.

  • PDF

Using Synoptic Data to Predict Air Temperature within Rice Canopies across Geographic Areas (종관자료를 이용한 벼 재배지대별 군락 내 기온 예측)

  • 윤영관;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.199-205
    • /
    • 2001
  • This study was conducted to figure out temperature profiles of a partially developed paddy rice canopy, which are necessary to run plant disease forecasting models. Air temperature over and within the developing rice canopy was monitored from one month after transplanting (June 29) to just before heading (August 24) in 1999 and 2001. During the study period, the temporal march of the within-canopy profile was analyzed and an empirical formula was developed for simulating the profile. A partially developed rice canopy temperature seemed to be controlled mainly by the ambient temperature above the canopy and the water temperature beneath the canopy, and to some extent by the solar altitude, resulting in alternating isothermal and inversion structures. On sunny days, air temperature at the height of maximum leafages was increased at the same rate as the ambient temperature above the canopy after sunrise. Below the height, the temperature increase was delayed until the solar noon. Air temperature near the water surface varied much less than those of the outer- and the upper-canopy, which kept increasing by the time of daily maximum temperature observed at the nearby synoptic station. After sunset, cooling rate is much less at the lower canopy, resulting in an isothermal profile at around the midnight. A fairly consistent drop in temperature at rice paddies compared with the nearby synoptic weather stations across geographic areas and time of day was found. According to this result, a cooling by 0.6 to 1.2$^{\circ}C$ is expected over paddy rice fields compared with the officially reported temperature during the summer months. An empirical equation for simulating the temperature profile was formulated from the field observations. Given the temperature estimates at 150 cm above the canopy and the maximum deviation at the lowest layer, air temperature at any height within the canopy can be predicted by this equation. As an application, temperature surfaces at several heights within rice fields were produced over the southwestern plains in Korea at a 1 km by 1km grid spacing, where rice paddies were identified by a satellite image analysis. The outer canopy temperature was prepared by a lapse rate corrected spatial interpolation of the synoptic temperature observations combined with the hourly cooling rate over the rice paddies.

  • PDF

Marine Environmental Characteristics of Goheung Coastal Waters during Cochlodinium polykrikoides Blooms (Cochlodinium polykrikoides 적조 발생시의 한국 남해안 고흥 연안의 해양환경 특징)

  • Lee, Moon Ock;Kim, Byeong Kuk;Kim, Jong Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.166-178
    • /
    • 2015
  • We investigated marine environmental characteristics of Goheung coastal areas in August where is known to be the first outbreak site of Cochlodinium polykrikoides (hereafter C. polykrikoides) blooms, based on the oceanographic data observed from 1993 to 2013 around the Korean southern coastal waters including Eastern China Sea by National Fisheries Research and Development Institute (NFRDI). The data of NOAA/NGSST satellite images as well as numerical simulation results by Seo et al. [2013] were also used for analysis. Water temperatures at the surface and bottom layers in Goheung coast, i.e. Narodo, were $25.0^{\circ}C$ and $23.7^{\circ}C$ so that they were higher than $23.8^{\circ}C$ and $19.4^{\circ}C$ in Geoje coast where is a reference site, respectively. In addition, salinities at the surface and bottom layers in Goheung coast were 31.78 psu and 31.98 psu so that they were a little higher than 31.54 psu at the surface but a little lower than 32.79 psu at the bottom in Geoje coast, respectively. That is, the differences in water temperature or salinity between the surface and bottom layers in Goheung coast in August were not large compared to Geoje coast. This suggests that stratification in Goheung coast in August is fairly weak or may not be established. In addition, the concentrations of DIN and DIP at the surface layer were 0.068 mg/L ($4.86{\mu}M$) and 0.015 mg/L ($5.14{\mu}M$) in Goheung coast while 0.072 mg/L ($5.14{\mu}M$) and 0.01 mg/L ($0.32{\mu}M$) in Geoje coast, so they did not indicate a meaningful difference. On the other hand, when C. polykrikoides blooms, water temperature and salinity in August at the station 317-22 ($31.5^{\circ}N$, $124^{\circ}E$) of the East China Sea, where is near the mouth of Yangtze River, were $27.8^{\circ}C$ and 31.61 psu, respectively. Thus, water temperature was much higher whereas salinity was almost similar compared to Goheung coast. Furthermore, concentrations of $NO_3-N$ and $PO_4-P$ in the East China Sea in August were remarkably high compared to Goheung coast. When C. polykrikoides blooms, according to not only the image data of satellites NOAA/NGSST but also numerical experiment results by Seo et al.[2013], the freshwater out of Yangtze River was judged to clearly affect the Korean southern coastal waters. Therefore, the supply of nutrients in terms of Yangtze River may greatly contribute to the outbreak of C. polykrikoides blooms in Goheung coast in summer.

Development and Validation of Korean Composit Burn Index(KCBI) (한국형 산불피해강도지수(KCBI)의 개발 및 검증)

  • Lee, Hyunjoo;Lee, Joo-Mee;Won, Myoung-Soo;Lee, Sang-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.1
    • /
    • pp.163-174
    • /
    • 2012
  • CBI(Composite Burn Index) developed by USDA Forest Service is a index to measure burn severity based on remote sensing. In Korea, the CBI has been used to investigate the burn severity of fire sites for the last few years. However, it has been an argument on that CBI is not adequate to capture unique characteristics of Korean forests, and there has been a demand to develop KCBI(Korean Composite Burn Index). In this regard, this study aimed to develop KCBI by adjusting the CBI and to validate its applicability by using remote sensing technique. Uljin and Youngduk, two large fire sites burned in 2011, were selected as study areas, and forty-four sampling plots were assigned in each study area for field survey. Burn severity(BS) of the study areas were estimated by analyzing NDVI from SPOT images taken one month later of the fires. Applicability of KCBI was validated with correlation analysis between KCBI index values and NDVI values and their confusion matrix. The result showed that KCBI index values and NDVI values were closely correlated in both Uljin (r = -0.54 and p<0.01) and Youngduk (r = -0.61 and p<0.01). Thus this result supported that proposed KCBI is adequate index to measure burn severity of fire sites in Korea. There was a number of limitations, such as the low correlation coefficients between BS and KCBI and skewed distribution of KCBI sampling plots toward High and Extreme classes. Despite of these limitations, the proposed KCBI showed high potentials for estimating burn severity of fire sites in Korea, and could be improved by considering the limitations in further studies.