• Title/Summary/Keyword: Satellite Communications Networks

Search Result 109, Processing Time 0.023 seconds

Satellite communication Equalizer Using Complex Bilinear Recurrent Neural Network (C-BLRNN을 이용한 위성채널 등화기)

  • 박동철;정태균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3A
    • /
    • pp.375-382
    • /
    • 2000
  • Equalization of satellite communication using Complex-Bilinear Recurrent Neural Network(C-BLRNN) is proposed in this pater. Since the BLRNN is based on the bilinear polynomial and it has been more effectively used in modeling highly nonlinear systems with time-series characteristics than multi-layer perception type neural networks(MLPNN) , it can be applied to satellite equalizer. the proposed C-BLRNN based equalizer for M-PSK with a channel model is compared with Volterra filter Equalizer, DFE, and conventional Complex MLPNN Equlizer. The results show that the proposed C-BLRNN based equalizer gives very favorable results in both of MSE and BER criteria over other equalizers.

  • PDF

Operation Scheme of Aerial Relay Networks and the Analysis of Its Effectiveness against Failures of Terrestrial Tactical Networks (지상 전술망 장애에 대비한 공중중계망 운용 방안 및 이의 효과도 분석)

  • Ghil, Joon-ho;Lee, Gyu-min;Lee, Seungwoon;Roh, Byeong-hee;Kim, Jae-hyun;Kim, Donghyun;Lee, Jaemoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.172-180
    • /
    • 2017
  • Korean army has been trying to construct a future tactical network in collaboration with TICN at the ground level and the next-generation military satellite system in the space level. However, due to the low bandwidth and high operational cost, the satellite system has the limitation to exchange all kind of tactical information through it. To overcome the limitation, there have been several researches to construct airborne networks. In this paper, we propose an effective interworking architecture and operation scheme between terrestrial tactical networks and aerial relay networks to counteract against the communication breaks of terrestrial terminals. And, we also propose a way to analyze its effectiveness. The experimental results show that the interworking of aerial relay networks can manage the failure situations in terrestrial tactical networks very effectively.

Constant Envelope Enhanced FQPSK and Its Performance Analysis

  • Xie, Zhidong;Zhang, Gengxin;Bian, Dongming
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.442-448
    • /
    • 2011
  • It's a challenging task to design a high performance modulation for satellite and space communications due to the limited power and bandwidth resource. Constant envelope modulation is an attractive scheme to be used in such cases for their needlessness of input power back-off about 2~3 dB for avoidance of nonlinear distortion induced by high power amplifier. The envelope of Feher quadrature phase shift keying (FQPSK) has a least fluctuation of 0.18 dB (quasi constant envelope) and can be further improved. This paper improves FQPSK by defining a set of new waveform functions, which changes FQPSK to be a strictly constant envelope modulation. The performance of the FQPSK adopting new waveform is justified by analysis and simulation. The study results show that the novel FQPSK is immune to the impact of HPA and outperforms conventional FQPSK on bit error rate (BER) performance. The BER performance of this novel modulation is better than that of FQPSK by more than 0.5 dB at least and 2 dB at most.

6G in the sky: On-demand intelligence at the edge of 3D networks (Invited paper)

  • Strinati, Emilio Calvanese;Barbarossa, Sergio;Choi, Taesang;Pietrabissa, Antonio;Giuseppi, Alessandro;De Santis, Emanuele;Vidal, Josep;Becvar, Zdenek;Haustein, Thomas;Cassiau, Nicolas;Costanzo, Francesca;Kim, Junhyeong;Kim, Ilgyu
    • ETRI Journal
    • /
    • v.42 no.5
    • /
    • pp.643-657
    • /
    • 2020
  • Sixth generation will exploit satellite, aerial, and terrestrial platforms jointly to improve radio access capability and unlock the support of on-demand edge cloud services in three-dimensional (3D) space, by incorporating mobile edge computing (MEC) functionalities on aerial platforms and low-orbit satellites. This will extend the MEC support to devices and network elements in the sky and forge a space-borne MEC, enabling intelligent, personalized, and distributed on-demand services. End users will experience the impression of being surrounded by a distributed computer, fulfilling their requests with apparently zero latency. In this paper, we consider an architecture that provides communication, computation, and caching (C3) services on demand, anytime, and everywhere in 3D space, integrating conventional ground (terrestrial) base stations and flying (non-terrestrial) nodes. Given the complexity of the overall network, the C3 resources and management of aerial devices need to be jointly orchestrated via artificial intelligence-based algorithms, exploiting virtualized network functions dynamically deployed in a distributed manner across terrestrial and non-terrestrial nodes.

The Softest handoff Design using iterative decoding (Turbo Coding)

  • Yi, Byung-K.;Kim, Sang-G.;Picknoltz, Raymond-L.
    • Journal of Communications and Networks
    • /
    • v.2 no.1
    • /
    • pp.76-84
    • /
    • 2000
  • Communication systems, including cell-based mobile communication systems, multiple satellite communication systems of multi-beam satellite systems, require reliable handoff methods between cell-to-cell, satellite-to-satellite of beam-to-team, respectively. Recent measurement of a CDMA cellular system indicates that the system is in handoff at about 35% to 70% of an average call period. Therefore, system reliability during handoff is one of the major system performance parameters and eventually becomes a factor in the overall system capacity. This paper presents novel and improved techniques for handoff in cellular communications, multi-beam and multi-satellite systems that require handoff during a session. this new handoff system combines the soft handoff mechanism currently implemented in the IS-95 CDMA with code and packet diversity combining techniques and an iterative decoding algorithm (Turbo Coding). the Turbo code introduced by Berrou et all. has been demonstrated its remarkable performance achieving the near Shannon channel capacity [1]. Recently. Turbo codes have been adapted as the coding scheme for the data transmission of the third generation international cellular communication standards : UTRA and CDMA 2000. Our proposed encoder and decoder schemes modified from the original Turbo code is suitable for the code and packet diversity combining techniques. this proposed system provides not only an unprecedented coding gain from the Turbo code and it iterative decoding, but also gain induced by the code and packet diversity combining technique which is similar to the hybrid Type II ARQ. We demonstrate performance improvements in AWGN channel and Rayleigh fading channel with perfect channel state information (CSI) through simulations for at low signal to noise ratio and analysis using exact upper bounding techniques for medium to high signal to noise ratio.

  • PDF

Performance Analysis of Call Admission Control Scheme with Bandwidth Borrowing and Bandwidth Reservation in GEO based Integrated Satellite Network (GEO 기반 위성 네트워크에서의 대역폭 빌림 방법과 대역폭 예약 방법을 이용한 호 수락 제어 성능 분석)

  • Hong, Tae-Cheol;Gang, Gun-Seok;An, Do-Seop;Lee, Ho-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.1
    • /
    • pp.12-19
    • /
    • 2006
  • In this paper, we propose the bandwidth borrowing scheme which improves the performance of the cal admission control of the integrated GEO satellite networks. In general, target transmission rates of communications and streaming services are fixed, but data services do not have the target transmission rates. Therefore, we can control the transmission rates for data services flexibly according to the system loading situation. When the available bandwidth of the system is insufficient, the bandwidth borrowing scheme gives the bandwidth to request real time services by the transmission rates control of data services through packet scheduler. We make the queueing model for our system model and demonstrate the results through simulations. The simulation results show that there is a 8.7-35.2 dB gain at the total blocking probability according to the use of bandwidth borrowing scheme.

  • PDF

Adaptive Call Admission and Bandwidth Control in DVB-RCS Systems

  • Marchese, Mario;Mongelli, Maurizio
    • Journal of Communications and Networks
    • /
    • v.12 no.6
    • /
    • pp.568-576
    • /
    • 2010
  • The paper presents a control architecture aimed at implementing bandwidth optimization combined with call admission control (CAC) over a digital video broadcasting (DVB) return channel satellite terminal (RCST) under quality of service (QoS) constraints. The approach can be applied in all cases where traffic flows, coming from a terrestrial portion of the network, are merged together within a single DVB flow, which is then forwarded over the satellite channel. The paper introduces the architecture of data and control plane of the RCST at layer 2. The data plane is composed of a set of traffic buffers served with a given bandwidth. The control plane proposed in this paper includes a layer 2 resource manager (L2RM), which is structured into decision makers (DM), one for each traffic buffer of the data plane. Each DM contains a virtual queue, which exactly duplicates the corresponding traffic buffer and performs the actions to compute the minimum bandwidth need to assure the QoS constraints. After computing the minimum bandwidth through a given algorithm (in this view the paper reports some schemes taken in the literature which may be applied), each DM communicates this bandwidth value to the L2RM, which allocates bandwidth to traffic buffers at the data plane. Real bandwidth allocations are driven by the information provided by the DMs. Bandwidth control is linked to a CAC scheme, which uses current bandwidth allocations and peak bandwidth of the call entering the network to decide admission. The performance evaluation is dedicated to show the efficiency of the proposed combined bandwidth allocation and CAC.

Study on D2D Relay based Interconnection Network of HAM Radio and Wi-Fi for Securing Communication Performance in Satellite Wireless Package Systems (이동단말용 위성 통신 무선 패키지 시스템을 위한 D2D Relay 기반 HAM Radio와 Wi-Fi Network 결합망의 통신 성능 확보 연구)

  • Hwang, Yu Min;Cha, Jae Sang;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.1
    • /
    • pp.12-16
    • /
    • 2015
  • In this paper, we introduce a wireless package system based on the amateur radio HR(HAM Radio) and satellite communication as a novel wireless disaster communication system and have configured a interference scenario receiving interference from adjacent base stations and D2D groups in the disaster network. In such interference scenarios, we propose a frequency re-allocation method to avoid interference and communicate with disaster networks by securing the channel capacity required between D2D terminals. As a result of computer simulation, we can find the proposed method has improved BED performance of a gain of 1.5dB and overall system throughput than conventional methods.

A Study on Design of Wireless Networks using Mesh Networks (메쉬 네트워크를 활용한 무선 네트워크망 설계에 관한 연구)

  • Choi, Yong-Seok;Rho, Jung-Kyu
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.1
    • /
    • pp.45-50
    • /
    • 2014
  • In this paper, broadband wireless smart city network coverage was implemented targeting a city (Wonju) using the wireless mesh network. Through this, we could provide wireless network that can easily add network and be repaired easily and have high economic effect. In order to implement broadband wireless smart city network coverage, wireless mesh network has been designed through pre-survey of the region and appropriate selecting of equipment. In addition, the designed network is examined, evaluated and compared with existing network though simulation. The aim of this paper is to prove high cost saving effect of wireless mesh network and its superior performance and to suggest future oriented integrated network of Green IT though research.

Power Control in RF Energy Harvesting Networks (무선 에너지 하비스팅 네트워크에서의 전력 제어 기법)

  • Hwang, Yu Min;Shin, Dong Soo;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.51-55
    • /
    • 2017
  • This paper aims to maximize the energy harvesting rate and channel capacity in RF-energy harvesting networks (RF-EHNs) under the constraints of maximum transmit power and minimum quality of service (QoS) in terms of rate capacity for each user. We study a multi-user RF-EHN with frequency division multiple access (FDMA) in a Rayleigh channel. An access point (AP) simultaneously transmitting wireless information and power in the RF-EHN serves a subset of active users which have a power-splitting antenna. To gauge the network performance, we define energy efficiency (EE) and propose an optimization solution for maximizing EE with Lagrangian dual decomposition theory. In simulation results, we confirm that the EE is effectively maximized by the proposed solution with satisfying the given constraints.