• Title/Summary/Keyword: Saroplasmic reticulum

Search Result 1, Processing Time 0.013 seconds

Effect of Ginseng Components on Ryanodine Receptor-$Ca^{2+}$ Release Channel Complex Protein in Sarcoplasmlc Reticulum of Skeletal Muscle (근 소포체 Ryanodine Receptor-$Ca^{2+}$Release Channel Complex Protein에 미치는 인삼 성분의 영향)

  • 이희봉;한병돈;권상옥
    • Journal of Ginseng Research
    • /
    • v.20 no.3
    • /
    • pp.274-283
    • /
    • 1996
  • In this study, the effects of red ginseng components [ginsenosides (total saponins and $Rg_1$) on the function of ryanodine receptor (RyR) -$Ca^{2+}$ release channel complex protein (named as RyR or $Ca^{2+}$ channel), a membrane protein in sarcoplasmic reticulum (SR) of rabbit skeletal muscle were examined at the SR vesicle's level and the molecular levels with Chaps-solubilized and purified $Ca^{2+}$ channel protein and with reconstituted proteoliposomes by dialysis. The results were as follows. 1. The binding of ryanodine known as inhibitor of muscle contraction to the RyR was decreased at the whole range of concentration ($10^2$~$10^7$%) by these two ginseng components. In heavy SR vesicles, Chaps-solubilized and purified $Ca^{2+}$ channel protein, and reconstituted vesicles, its maximal inhibition by total saponins was shown at the concentration of $10^3$, $10^3$%, and $10^5$% respectively, and by gin- senoside $Rg_1}$) each was $10^3$%, $10^3$%, and $10^4$%. 2. The release of $Ca^{2+}$ ion through $Ca^{2+}$ channel in heavy SR vesicles and reconstituted proteoliposomes was increased as a whole by these two ginseng components, and particularly maximal release by both of them was shown at the range of $10^4$~$10^6$%. These results were seemed to be caused by conformational change of $Ca^{2+}$ release channel protein (RyR) by red ginseng components [ginsenosides (total saponins and $Rg_1}$).

  • PDF