• Title/Summary/Keyword: Sandwich structure

Search Result 498, Processing Time 0.028 seconds

Fabrication of Lightweight Sandwich Structural Components with Superplastic Forming/Diffusion Bonding Technology (초소성/확산접합 기술을 이용한 티타늄 샌드위치 경량구조물 제작)

  • Lee, Ho-Sung;Yoon, Jong-Hoon;Yi, Yeong-Moo;Shin, Dong Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.778-782
    • /
    • 2007
  • In the present study, design and forming process of fabricating titianium lightweight components are developed with applicaton of superplastic forming and diffusion bonding technology. SPF/DB(Superplastic forming/Diffusion bonding) technology is one of the advanced technologies to reduce production cost and weight and currently applied to aircrafts and space launchers in foreign countries. The present study constructs an analysis model to predict superplastic forming behavior of titanium alloy, which is well known for its resistance to deform. The experimental results show the forming of titanium lightweight sandwich structure is successfully performed from 3 sheets of Ti-6Al-4V. The results demonstrate that the developed technology to process design of SPF/DB by the finite element method can be applied to various types of components.

Design for Improving the Loss Factor of Composite with Sandwich Structure (샌드위치 구조를 가지는 복합재의 손실계수 향상을 위한 설계)

  • Lee, C. M.;Jeon, G.S.;Kang, D.S.;Kim, B.J.;Kim, J.H.;Kang, M.H.;Seo, Y.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.235-241
    • /
    • 2016
  • Underwater weapon system is required to structurally strong material, since as it is directly exposed to external shock. It should also be using the lightweight material in order to take advantage of buoyancy. Composite materials meet these requirements simultaneously. Particularly in the case of submarine, composite materials are widely used. It is important to have a high strength enough to be able to withstand external shock, but it is also important to attenuate it. In a method for the shock damping, viscoelastic damping materials are inserted between the high strength composite material as a sandwich structure. Shock attenuation can be evaluated in the loss factor. In ASTM(American Society of Testing Materials), evaluation method of the loss factor of cantilever specimens is specified. In this paper, mode tests of the cantilever are performed by the ASTM standard, in order to calculate the loss factor of the viscoelastic damping material by the specified expression. Further, for verifying of the calculated loss factor, mode test of compound beams is carried out. In addition, the characteristics of the material were analyzed the effect on the loss factor.

Visible-Light-Driven Catalytic Disinfection of Staphylococcus aureus Using Sandwich Structure g-C3N4/ZnO/Stellerite Hybrid Photocatalyst

  • Zhang, Wanzhong;Yu, Caihong;Sun, Zhiming;Zheng, Shuilin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.957-967
    • /
    • 2018
  • A novel $g-C_3N_4$/ZnO/stellerite (CNZOS) hybrid photocatalyst, which was synthesized by coupled hydro thermal-thermal polymerization processing, was applied as an efficient visible-light-driven photocatalyst against Staphylococcus aureus. The optimum synthesized hybrid photocatalyst showed a sandwich structure morphology with layered $g-C_3N_4$ (doping amount: 40 wt%) deposited onto micron-sized ZnO/stellerite particles (ZnO average diameter: ~18 nm). It had a narrowing band gap (2.48 eV) and enlarged specific surface area ($23.05m^2/g$). The semiconductor heterojunction effect from ZnO to $g-C_3N_4$ leads to intensive absorption of the visible region and rapid separation of the photogenerated electron-hole pairs. In this study, CNZOS showed better photocatalytic disinfection efficiency than $g-C_3N_4/ZnO$ powders. The disinfection mechanism was systematically investigated by scavenger-quenching methods, indicating the important role of $H_2O_2$ in both systems. Furthermore, $h^+$ was demonstrated as another important radical in oxidative inactivation of the CNZOS system. In respect of the great disinfection efficiency and practicability, the CNZOS heterojunction photocatalyst may offer many disinfection applications.

Design of the Base for the Onboard Installed Equipment to Minimize Structure-borne Noise (구조전달소음 최소화를 위한 함정탑재장비의 베이스 설계)

  • Han, HyungSuk;Lee, KyoungHyun;Park, SungHo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.6
    • /
    • pp.432-439
    • /
    • 2015
  • In order to reduce the structure borne noise of the equipment sufficiently, its exciting force should be restricted and additional anti-vibration devices such as resilient mount and bellows should be applied. Since the structure borne noise is dependent on the design of the base for the equipment, it is very important to design the base with low vibration. Therefore, in this research, various types of the base design for the shipboard equipment are investigated to reduce the structure borne noise. In order to design the base with low vibration, the exciting force at the center of the gravity of the equipment is firstly defined through the experiment. Using the exciting force identified by experiments, various types of base designs for the typical turbo machine are evaluated by FEM(finite element method) analysis.

Dynamic analysis by impact load in viscoelastic sandwich plates with FRP layer utilizing numerical method

  • Bayati, Mohammad Reza;Mazaheri, Hamid;Bidgoli, Mahmood Rabani
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.229-240
    • /
    • 2022
  • The main objective of this work is presenting a mathematical model for the concrete slab with fiber reinforced polymer (FRP) layer under the impact load. Impacts are assumed to occur normally over the top slab and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the sinusoidal shear deformation theory (SSDT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure is calculated numerically so that the effects of mass, velocity and height of impactor, boundary conditions, FRP layer, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force of system. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the impact velocity of impactor yields to increases in the maximum contact force and deflection while the contact duration is decreased. The result shows that the contact force and the central deflection of the structure decreases and the contact time decreases with assuming FRP layer.

Hybrid adaptive neuro-fuzzy inference system method for energy absorption of nano-composite reinforced beam with piezoelectric face-sheets

  • Lili Xiao
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.141-154
    • /
    • 2023
  • Effects of viscoelastic foundation on vibration of curved-beam structure with clamped and simply-supported boundary conditions is investigated in this study. In doing so, a micro-scale laminate composite beam with two piezoelectric face layer with a carbon nanotube reinforces composite core is considered. The whole beam structure is laid on a viscoelastic substrate which normally occurred in actual conditions. Due to small scale of the structure non-classical elasticity theory provided more accurate results. Therefore, nonlocal strain gradient theory is employed here to capture both nano-scale effects on carbon nanotubes and microscale effects because of overall scale of the structure. Equivalent homogenous properties of the composite core is obtained using Halpin-Tsai equation. The equations of motion is derived considering energy terms of the beam and variational principle in minimizing total energy. The boundary condition is assumed to be clamped at one end and simply supported at the other end. Due to nonlinear terms in the equations of motion, semi-analytical method of general differential quadrature method is engaged to solve the equations. In addition, due to complexity in developing and solving equations of motion of arches, an artificial neural network is design and implemented to capture effects of different parameters on the inplane vibration of sandwich arches. At the end, effects of several parameters including nonlocal and gradient parameters, geometrical aspect ratios and substrate constants of the structure on the natural frequency and amplitude is derived. It is observed that increasing nonlocal and gradient parameters have contradictory effects of the amplitude and frequency of vibration of the laminate beam.

Classification of Fire Causes in Warehouses Using the TRIZ Technique and Analysis of Preventive Measures Accordingto 4M (TRIZ기법에 의한 물류창고의 화재원인 및 4M에 따른 예방대책 분석)

  • Han, Sang-Hun;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.401-412
    • /
    • 2020
  • This study analyzed the causes of warehouse fires using a creative problem-solving technique called TRIZ. It identified preventive measures by applying 4M. The results are as follows. First, this study examined the inconsistency among the causes of warehouse fires using TRIZ. Second, it analyzed human factors and fire prevention measures in warehouses such as safety standards for managers, and methods for the promotion of safety consciousness among workers, and for the reinforcement of construction technology for sandwich panel workers. Third, it identified the mechanical and facility factors and fire prevention measures in warehouses such as safety facilities, the expanded installation of safety devices, the adoption and development of fire suppression equipment, and the deployment of methods to improve the fire resistance of sandwich panels. Fourth, it presented working and environmental factors and fire prevention measures in warehouses such as the tightening of safety precautions and the supervision of working methods, and setting fire partitions both in loading places and based on performance-based design. Finally, it proposed managerial factors and fire prevention measures in warehouses such as specific targeting for firefighting with low fire hazards, reviewing the material quality regulations of non-combustible or higher for sandwich panels in the specific target of firefighting that cannot apply fire safety standards, installing sprinklers in cold storage, and mandating the installation of automated facilities with retroactive application regardless of the floor area in the warehouse with a sandwich panel structure.

Design and Manufacture of Composite Machine Tool Structures for High Speed Milling Machines (고속 밀링 머신용 복합재료 이송부의 설계와 제작)

  • 서정도;김학성;김종민;최진경;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.223-226
    • /
    • 2002
  • To maximize the productivity in machining molds and dies, machine tools should operate at high speeds. However, the productivity of mold manufacturing has not increased significantly because CNC milling machines have massive slides, which do not allow rapid acceleration and deceleration during the frequent starts/stops encountered in machining molds and dies. This paper presents the use of composites for these slides to overcome this limitation. The vertical and horizontal slides of a large CNC machine were constructed by bonding high-modulus carbon-fiber epoxy composite sandwiches to welded steel structures using adhesives. These composite structures reduced the weight of the vertical and horizontal slides by 34% and 26%, respectively, and increased damping by 1.5 to 5.7 times without sacrificing the stiffness. Without much tuning, this machine had a positional accuracy of $\pm5\mu\textrm{m}$ per 300 m of the slide displacement.

  • PDF

Design of Microstrip Antenna with Composite Laminates and its structural rigidity (복합재료 평면 안테나 구조의 제작 및 기계적 특성 평가)

  • 전지훈;유치상;김차겸;황운봉;박현철;박위상
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.195-198
    • /
    • 2002
  • Two types of conformal load-bearing antenna structure (CLAS) were designed with microwave composite laminates and Nomex honeycomb cores, to give both structural rigidity and good electrical performance. One is 4$\times$8 array for Synthetic Aperture Radar(SAR) system and the other is $5\times2$ array for wireless LAN system. Design was based on wide bandwidth, high polarization purity, low loss and good structural rigidity. We studied the design, fabrication and structural/electrical performances of the antenna structures. The flexural behavior was observed under a 3-point bending test, an impact test, and a buckling test. Electrical measurements were in good agreement with simulation results and these complex antenna structures have good flexural characteristics. The design of this antenna structure is extended to give a useful guide for sandwich panel manufacturers as well as antenna designers.

  • PDF

Effects of Slip for Interface on Behavior and Capacity in Hybrid Structure (합성구조체의 경계면 슬립이 거동과 성능에 미치는 영향)

  • 정연주;정광회;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.385-390
    • /
    • 2001
  • This paper presents a nonlinear analysis technique with slip, the effects of slip modulus and composite action by shear connector on behavior and capacity in composite structure of sandwich system. As a results of this study, it proved that the slip modulus, in case of shear behavior, seldom influence load-resistance capacity such as yield and ultimate load, but in case of flexural behavior, it appropriately influence load-resistance capacity because of stress redistribution by slip. In case of flexural behavior, analysis result for perfect-composite results in over-estimation and perfect-slip results in under-estimation on behavior and capacity. Therefore, it is desirable to model steel-concrete interface with partial-composite. The effects of slip on behavior and capacity are less in case of positive composite than loosely composite, and it proved that composite action by shear connector improve the load-resistance capacity of this system.

  • PDF