• Title/Summary/Keyword: Sands

Search Result 695, Processing Time 0.025 seconds

Evaluation of Static and Dynamic Characteristics of Coal Ashes (석탄회의 정적 및 동적 특성 평가)

  • Yoon, Yeowon;Chae, Kwangsuk;Song, Kyuhwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.3
    • /
    • pp.5-12
    • /
    • 2009
  • This study presents static and dynamic strength of coal ashes collected from disposal site of power plant. Main compositions of coal ashes were bottom ashes. In order to evaluate static and dynamic characteristics of coal ash, NGI direct-simple shear tests, cyclic simple shear tests and direct shear tests were conducted. The strengths of coal ashes from those tests were compared to those of sands. Bottom ashes among coal ashes used for this study were classified as sand from the grain size distribution and show higher strength properties than the sands. For utilization of coal ashes in civil engineering project, mixing coal ashes with sandy soil using batch plant is inconvenient and the cost is higher than the spreading sand layer and coal layer alternately. In order to simulate both mixing type and layered type construction, sands and coal ashes were mixed with volume ratio 50:50 and prepared sand and coal ash layers alternately with the same volume ratio. From the tests mixed coal ashes-specimen shows slightly higher static and cyclic strength than the layered specimen at the same density. The higher strength seems due to the angular grain of bottom ashes. The cyclic stress ratio at liquefaction decreases rapidly as the number of cycle increases at mixed specimen than that of layered specimen.

  • PDF

Anisotropy in Strength and Deformation Properties of a Variety of Sands by Plane Strain Compression Tests(Part II) -Deformation Characteristics at Extremely Small Strain Level (평면변형률압축시험에 의한 각종 모래의 강도.변형특성의 이방성(II)-미소변형률에서의 변형특성 이방성)

  • 박춘식;장정욱
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.33-46
    • /
    • 1998
  • Anisotropy of stiffness, from extremely small strains to post-failure strains, of isotropically consolidated air-pluviated sands in plane strain compression was studied by using the newly developed instrumentation for small strain measurements. Seven types of sand of the world-wide origins were tested, which have been extensively used for research purposes. Stress-strain at the specimen boundaries. It was found that the maximum Young's modulus $E_{max}$ was irrespective of the angle $\delta$ of the $\delta_1$ direction relative to the bedding plane. However, the normalized$ E_{max}$ was varied with the types of sand. Furthermore, the dependency of the strain and stress level on the stiffness was increased as $\delta$ decreased.

  • PDF

A Basic Study on Crushability of Sands and Characteristics of Particle Strength (모래의 파쇄성과 단입자강도 특성에 관한 기초적 연구)

  • 곽정민
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.193-204
    • /
    • 1999
  • Particle crushing is an important and essential factor in interpreting the strength and deformation properties of granular materials in the case of geotechnical problems related to soil crushability. As a recent field problem, the exploitation of offshore oil reserves in tropical and sub-tropical coastal shelf areas has shown that the behaviour of soils containing carbonates is markedly different from predominantly silica sands. In this study, as a first step in making a mechanical framework of granular materials incorporating the soil crushability, single particle fragmentation tests were carried out on four different types of sands in order to clarify the characteristics of the single particle fragmentation strength as related to soil crushability. The single particle strength was considered with the influence of the particle shapes, the amount of mineral components and the particle sizes. The soil particle strength corresponding $D_{50}$ of soil distribution curve has shown the lower value, the more the carbonate component and the more angular the particle shape.

  • PDF

The Strength and Drying Shrinkage Properties of Alkali-Activated Slag Mortars as the Particle Size of Blended Fine Aggregate (혼합 잔골재의 입자 크기에 따른 알칼리 활성화 슬래그 모르타르의 강도와 건조수축 특성)

  • Kim, Tae Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.273-281
    • /
    • 2015
  • In this paper, the performance of alkali-activated slag cement (AASC) is assessed in terms of compressive strength and drying shrinkage, using three different types of silica sand and river sand. The sand type has an important influence on the properties of AASC mortar. Three silica sands (SS1, SS2 and SS3) and river sand (RS) were considered. Three series of blended sands have been tested. A first series (S1) with RS and SS1, a second series (S2) with RS and SS2 and third series (S3) with RS and SS3 with a different blended ratios. The result shows a very significant influence of the blended sand on the AASC mortar properties. The compressive strength and drying shrinkage related with the particle sizes and blended ratios of sands are investigated considering blended sand properties like fineness modulus (FM) and relative specific surface. The type and blended ratio of sand seems to have very significant and important consequences for the mix design of the AASC mortar.

Textural Characteristics and Transport Mode of Surface Sediments of a Tidal Sand Ridge in Gyeonggi Bay, Korea (경기만 조류성 사퇴 표층 퇴적물의 입도 특성 및 이동 양상)

  • CHOI, JIN-HYUK;PARK, YONG AHN
    • 한국해양학회지
    • /
    • v.27 no.2
    • /
    • pp.145-153
    • /
    • 1992
  • From the analyses of 16 bottom sediment samples and current data obtained during field expert ments from August to September 1987, the textural characteristics and transport mode of sand grains of a tidal sand ridge in Gyeonggi Bay are studied. The textural characteristic of the bottom sediments are diverse depending on their location on the tidal sand ridge. Sands on the crest are well sorted. near symmetric in skewness. leptokurtic in kurtosis. and are unimodal in peakedness. On the other hand, Poorly sorted gravelly sands in the trough are coarse skewed in skewness and plartkurtic in kurtosis. The mean values of U/SUB 100/ (velocity at one meter above bottom) and U/SUP */ (boundary shear velocity) are calculated to be 41.4 cm/sec and 2.39 cm/sec, respectively. From the analyses of characteristics of the sediments and currents in the study area, it can be concluded that almost all the sands of the tidal sand ridge (esp. on the crest) are transported as bedload (mainly as saltation).

  • PDF

Strength and Stiffness of Silty Sands with Different Overconsolidation Ratios and Water Contents (과압밀비와 함수비를 고려한 실트질 사질토 지반의 강도 및 변형 특성)

  • Kim Hyun-Ju;Lee Kyoung-Suk;Lee Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.53-64
    • /
    • 2005
  • For geotechnical design in practice, soils are, in general, assumed to behave as a linear elastic or perfect plastic material. More realistic geotechnical design, however, should take into account various factors that affect soil behavior in the field, such as non-linearity of stress-strain response, stress history, and water content. In this study, a series of laboratory tests including triaxial and resonant column tests were peformed with sands of various silt contents, relative densities, stress states, OCR and water contents. This aims at investigating effects of various factors that affect strength and stiffness of sands. From the results in this study, it is found that the effect of OCR is significant for the intermediate stress-strain range from the initial to failure, while it may be ignored for the initial stiffness and peak strength. For the effect of water content, it is observed that the initial elastic modulus decreases with increasing water content at lower confining stress and relative density At higher confining stresses, the effect of water content Is found to become small.

Stress-Strain-Strength Characteristics of Frozen Sands with Various Fine Contents (세립분 함유량에 따른 동결 사질토의 응력-변형률-강도 특성)

  • Chae, Deokho;Hwang, Bumsik;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.6
    • /
    • pp.31-38
    • /
    • 2015
  • Recently, the participation on the development of the natural gas pipeline in Russia as well as the recent construction of the second Korean Antarctic research station, the Jangbogo station provide the research interests on the behavior of the permafrost ground. To investigate the effect of fines on the mechanical responses of frozen sands, unconfined compression tests were performed on the frozen sands with 0, 5, 10 and 15% of fine contents at -5, -10 and $-15^{\circ}C$. The poorly graded (SP) Joomunjin sand and kaolinite, silt with low plasticity (ML) were used for the preparation of the frozen soil specimens. The mechanical responses of the tested soils were investigated via unconfined compression tests in the temperature controlled laboratory and analyzed in terms of peak unconfined compressive strength and secant modulus at 50% of the peak strength. As the fine contents increase, the unfrozen water contents increase and thus the strength and stiffness of frozen soils decrease. The increment of the stiffness and strength due to the temperature decrease vary with the fine contents.

Numerical Analysis of Helical Pile Behavior Varying Number and Diameter of Helices (헬릭스 개수 및 직경에 따른 헬리컬 파일 거동의 수치해석적 분석)

  • Bak, Jongho;Lee, Kicheol;Choi, Byeong-Hyun;Kim, Dongwook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.211-217
    • /
    • 2019
  • Oil extraction from oil sands, a non-traditional crude oil resource, is attracting attention as the oil price fluctuates due to recent economical and political issues. Many oil sands sites are mainly located in the polar regions. For plant construction to extract crude oil from oil sands in harsh environment of the polar regions, fast and simple installation of plant foundation is necessary. However, typically-used conventional foundations such as drilled shafts and driven piles are not suitable to construct under cold temperature and organic surface layers. In this study, helical piles enabling rapid and simple constructions using small rotary equipment without driving or excavation was considered. The helical pile consists of steel shaft and several helices attached to the steel shaft; therefore, the behavior of the helical pile depends on the number and shape of the helices. The effect of the helices' configuration (number and diameter of helices) on helical pile behavior was analyzed based on the numerical analysis results.

Numerical study on the rate-dependent behavior of geogrid reinforced sand retaining walls

  • Li, Fulin;Ma, Tianran;Yang, Yugui
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.195-205
    • /
    • 2021
  • Time effect on the deformation and strength characteristics of geogrid reinforced sand retaining wall has become an important issue in geotechnical and transportation engineering. Three physical model tests on geogrid reinforced sand retaining walls performed under various loading conditions were simulated to study their rate-dependent behaviors, using the presented nonlinear finite element method (FEM) analysis procedure. This FEM was based on the dynamic relaxation method and return mapping scheme, in which the combined effects of the rate-dependent behaviors of both the backfill soil and the geosynthetic reinforcement have been included. The rate-dependent behaviors of sands and geogrids should be attributed to the viscous property of materials, which can be described by the unified three-component elasto-viscoplastic constitutive model. By comparing the FEM simulations and the test results, it can be found that the present FEM was able to be successfully extended to the boundary value problems of geosynthetic reinforced soil retaining walls. The deformation and strength characteristics of the geogrid reinforced sand retaining walls can be well reproduced. Loading rate effect, the trends of jump in footing pressure upon the step-changes in the loading rate, occurred not only on sands and geogrids but also on geogrid reinforced sands retaining walls. The lateral earth pressure distributions against the back of retaining wall, the local tensile force in the geogrid arranged in the retaining wall and the local stresses beneath the footing under various loading conditions can also be predicted well in the FEM simulations.

Surface erosion of MICP-treated sands: Erosion function apparatus tests and CFD-DEM bonding model

  • Soo-Min Ham;Min-Kyung Jeon;Tae-Hyuk Kwon
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.133-140
    • /
    • 2023
  • Soil erosion can cause scouring and failures of underwater structures, therefore, various soil improvement techniques are used to increase the soil erosion resistance. The microbially induced calcium carbonate precipitation (MICP) method is proposed to increase the erosion resistance, however, there are only limited experimental and numerical studies on the use of MICP treatment for improvement of surface erosion resistance. Therefore, this study investigates the improvement in surface erosion resistance of sands by MICP through laboratory experiments and numerical modeling. The surface erosion behaviors of coarse sands with various calcium carbonate contents were first investigated via the erosion function apparatus (EFA). The test results showed that MICP treatment increased the overall erosion resistance, and the contribution of the precipitated calcium carbonate to the erosion resistance and critical shear stress was quantified in relation to the calcium carbonate contents. Further, these surface erosion processes occurring in the EFA test were simulated through the coupled computational fluid dynamics (CFD) and discrete element method (DEM) with the cohesion bonding model to reflect the mineral precipitation effect. The simulation results were compared with the experimental results, and the developed CFD-DEM model with the cohesion bonding model well predicted the critical shear stress of MICP-treated sand. This work demonstrates that the MICP treatment is effective in improving soil erosion resistance, and the coupled CFD-DEM with a bonding model is a useful and promising tool to analyze the soil erosion behavior for MICP-treated sand at a particle scale.