• Title/Summary/Keyword: Sands

Search Result 695, Processing Time 0.02 seconds

Seven new species of genus Dysidea (Demospongiae: Dictyoceratida: Dysideidae) from Korea

  • Young A Kim;Kyung Jin Lee
    • Journal of Species Research
    • /
    • v.12 no.1
    • /
    • pp.38-47
    • /
    • 2023
  • Seven new species of genus Dysidea (Demospongiae: Dictyoceratida: Dysideidae) are described from Jejudo Island and Geomundo Island, Korea. These new species are compared with other reported species in fibre structure and arrangement, and cored detritus. Dysidea reticulum n. sp. is similar to D. glavea in skeletal structure but differ in sponge shape. Dysidea simplex n. sp. is close to D. glavea with loosely arranged skeletal structure but fibres in this new species are not cored with large sands. Dysidea pyeongdaensis n. sp. is characterized by tube-like surface oscules open toward the sandy bottom. Dysidea capillus n. sp. is similar to D. dokdoensis in skeletal structure, but differs in long surface conules. Dysidea mukriensis n. sp. is close to D. corallina in distinct dense surface conules, but differs in sponge shape and skeletal structure. Dysidea membrana n. sp. is similar to D. sabulum in primary fibres cored with numerous large sands, but differs in sponge surface conules and secondary fibres. Dysidea chujaensis n. sp. is unique in the sponge shape and skeletal structure.

Factors affecting particle breakage of calcareous soil retrieved from South China Sea

  • Wang, Xinzhi;Shan, Huagang;Wu, Yang;Meng, Qingshan;Zhu, Changqi
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.173-185
    • /
    • 2020
  • Calcareous soil is originated from marine biogenic sediments and weathering of carbonate rocks. The formation history for calcareous sediment includes complex physical, biological and chemical processes. It is preferably selected as the major fill materials for hydraulic reclamation and artificial island construction. Calcareous sands possess inter pores and complex shape are liable to be damaged at normal working stress level due to its fragile nature. Thus, the engineering properties of calcareous soil are greatly affected by its high compressibility and crushability. A series of triaxial shear tests were performed on calcareous sands derived from South China Sea under different test conditions. The effects of confining pressure, particle size, grading, compactness, drainage condition, and water content on the total amount of particle breakage for calcareous soil were symmetrically investigated. The test results showed that the crushing extent of calcareous sand with full gradation was smaller than that a single particle group under the same test condition. Large grains are cushioned by surrounding small particles and such micro-structure reduces the probability of breakage for well-graded sands. The increasing tendency of particle crushing for calcareous sand with a rise in confining pressure and compactness is confirmed. It is also evident that a rise in water content enhances the amount of particle breakage for calcareous sand. However, varying tendency of particle breakage with grain size is still controversial and requires further examination.

Dynamic Deformation Characteristics of Sands Under Various Drainage Conditions (배추 조건에 따른 사질토 지반의 동적 변형특성)

  • Choo Yun-Wook;Kim Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.27-42
    • /
    • 2005
  • In this study, dynamic deformation characteristics of sands under dry, saturated drained and undrained conditions were investigated at small to intermediate strains using the modified Stokoe-type torsional shear tests. The equipment was modified to saturate the specimen and to maintain the B-value above 0.99 during the test. On two types of sands, Geumgang sand from Korea and Toyoura sand from Japan, tests were carried out at various drainage conditions, void ratios, and effective confining pressures. Based on the test results, dynamic deformation characteristics, shear modulus (G) and damping ratio (D), and/or pore-water pressure were measured with strain amplitude and number of loading cycles. Variations of G and D at small ($\gamma_c<{10}^{-3}\%$) to medium (${10}^{-3}\%<\gamma_c<{10}^{-1}\%$) strains were measured under various drainage conditions, and test results were intensively compared considering drainage conditions.

Disturbed State Modeling for Fully Saturated Sand under Dynamic Load

  • Park, Inn-Joon;Kim, Soo-Il
    • Geotechnical Engineering
    • /
    • v.14 no.3
    • /
    • pp.47-62
    • /
    • 1998
  • The disturbed state concept (DSC) proposed here is based on the idea that a deforming material element can be treated as a mixture of two constituent parts in the relative intact (Rl) and fully adjusted (FA) states, referred to as reference states. Based on this idea, DSC provides a unified constitutive model for the characteristics of saturated sands under cyclic loading. The model parameters for saturated sands are evaluated by using data from truly triaxial test device, The laboratory test results are also used for the verification of D SC model. In general, the model predictions are found to provide satisfactory correlation with the test results. From the results of this research, it can be stated that the DSC model is capable of characterizing the cyclic behavior of saturated sands under dynamic loading.

  • PDF

Shear Strength Estimation of Clean Sands via Shear Wave Velocity (전단파 속도를 통한 모래의 전단강도 예측)

  • Yoo, Jin-Kwon;Park, Duhee
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.17-27
    • /
    • 2015
  • We perform a series of experimental tests to evaluate whether the shear strength of clean sands can be reliably predicted from shear wave velocity. Isotropic drained triaxial tests on clean sands reconstituted at different relative densities are performed to measure the shear strength and bender elements are used to measure the shear wave velocity. Laboratory tests reveal that a correlation between shear wave velocity, void ratio, and confining pressure can be made. The correlation can be used to determine the void ratio from measured shear wave velocity, from which the shear strength is predicted. We also show that a unique relationship exists between maximum shear modulus and effective axial stress at failure. The accuracy of the equation can be enhanced by including the normalized confining pressure in the equation. Comparisons between measured and predicted effective friction angle demonstrate that the proposed equation can accurately predict the internal friction angle of granular soils, accounting for the effect of the relative density, from shear wave velocity.

Seasonal Variation of Surface Sediments in the Dongho Beach, Gochang-gun, Korea (고창군 동호 해빈 표층 퇴적물의 계절 변화)

  • So, Kwang-Suk;Ryang, Woo-Hun;Kang, Sol-Ip;Kwon, Yi-Kyun
    • Journal of the Korean earth science society
    • /
    • v.31 no.7
    • /
    • pp.708-719
    • /
    • 2010
  • The Gochang-gun Dongho macro-tide pocket-type beach, located on the southwestern coast of Korea, is investigated in terms of the seasonal variations of surface sediment and sedimentary environment. Surface sediments of 45 sites in four seasons (May 2006-February 2007) are sampled across three survey lines (15 sites in each survey line). The surface sediments of the Dongho Beach are mainly composed of fine to coarse sands, and the ratio of fine sand is the largest. The average of grain size is the coarsest in the summer. The spatial distribution of surface sediments shows a coast-parallel band of fine and medium sands during three seasons of spring, fall, and winter, whereas medium sands dominated in the northern part of the study area during the summer. These results suggest that a tide is more effective than a wave in the surface sediments of the Dongho Beach during the summer.

Anisotropy in Strength and Deformation Properties of a Variety of Sands by Plane Strain Compression Tests(Part III) -Shear Deformation Characteristics- (평면변형률압축시험에 의한 각종 모래의 강도.변형특성의 이방성(III) -전단변형 특성-)

  • 박춘식;황성춘;장정욱
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.95-105
    • /
    • 2000
  • Anisotropy of stiffiness, from extremely small strains to post-failure strains, of isotropically consolidated air-pulviated sands in plane strain compression was studied by using the newly developed instrumentation for small strain measurements. Seven types of sand of the world-wide origins were tested, which have been extensively used for research purposes. Stress-strain relationships for a wide range of strain from about 0.0001% to 10% were obtained with measuring axial and lateral strains locally free from the effects of bedding and membrane penetration errors at the specimen boundaries. It was found that the maximum shear modulus Gmax was irrespective of the angle $\delta$of the $\sigma$1 direction relative to the bedding plane. However, the normalized Gmax was varied with the types of sand. Furthermore, the dependency of the strain and stress level on the stiffness increased as decreased.

  • PDF