• 제목/요약/키워드: Sandblasting with large-grit and acid-etching

검색결과 7건 처리시간 0.031초

Comparative Study of the Early Loading of Resorbable Blasting Media and Sandblasting with Large-grit and Acid-etching Surface Implants: A Retrospective Cohort Study

  • Kim, Sung-Beom;Kim, Young-Kyun;Kim, Su-Gwan;Oh, Ji-Su;Kim, Byung-Hoon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제36권6호
    • /
    • pp.247-252
    • /
    • 2014
  • Purpose: This study compares the prognosis (the survival rate and marginal bone loss) of resorbable blasting media (RBM) surface implants and sandblasting with large-grit and acid-etching (SLA) surface implants in the early loading. Methods: This study targeted 123 patients treated by implants installation from January 2008 to March 2010. The loading was initiated in the maxilla within three to four months and in the mandible within one to two months. The types of restoration were single crown and fixed partial prosthesis. Those functioned over one year. The implants were classified by the surface of implants as Group 1: RBM surface (GS III; OSSTEM, Busan, Korea) and, Group 2: SLA surface (Superline; Dentium, Seoul, Korea). The groups were categorized by maxilla and mandible and compared by survival rate, marginal bone loss through clinical records evaluation, and radiographic measurements. Results: The marginal bone loss in the maxilla was $0.14{\pm}0.34mm$ (Group 1) and $0.30{\pm}0.37mm$ (Group 2), a statistically significant difference (P<0.05). In the mandible those were $0.28{\pm}0.54mm$ (Group 1) and $0.20{\pm}0.33mm$ (Group 2), not significant (P>0.05). There was no significant difference of marginal bone loss between maxilla and mandible by groups. During observation there was no implant failure, a survival rate of 100%. Conclusion: Both surfaces showed an excellent survival rate, and the marginal bone loss was not substantial.

Five-year retrospective radiographic follow-up study of dental implants with sandblasting with large grit, and acid etching-treated surfaces

  • Kim, Hak-Kyun;Lee, Eun-Young;Kim, Jae-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제41권6호
    • /
    • pp.317-321
    • /
    • 2015
  • Objectives: The purpose of this study is to evaluate five-year radiographic follow-up results of the Korean sandblasting with large grit, and acid etching (SLA)-treated implant system. Materials and Methods: The subjects of the study are 54 patients who have been followed-up to date, of the patients who underwent implant surgery from May 1, 2009 to April 30, 2011. In all, 176 implant placements were performed. Radiographs were taken before the first surgery, immediately after the first and second surgeries, immediately and six months after the final prosthesis installation, and every year after that. Bone loss was evaluated by the method suggested by Romanos and Nentwig. Results: A total of 176 implant placements were performed - 122 in men and 54 in women. These patients have been followed-up for an average of 4.9 years. In terms of prosthetic appliances, there were 156 bridges and 20 single prostheses. Nine implants installed in the maxillary molar area, three in the mandibular molar area and two in the maxillary premolar area were included in group M, with bone loss less than 2 mm at the crestal aspect of the implant. Of these, eight implants were single prostheses. In all, six implants failed - four in the mandible and two in the maxilla. All of these failures occurred in single-implant cases. The implant survival rate was 98.1% on the maxilla and 94.3% on the mandible, with an overall survival of 96.6%. Conclusion: Within the limitations of this study, implants with the SLA surface have a very superior survival rate in relatively poor bone environments such as the maxilla.

Bone healing dynamics associated with 3 implants with different surfaces: histologic and histomorphometric analyses in dogs

  • Lee, Jungwon;Yoo, Jung Min;Amara, Heithem Ben;Lee, Yong-Moo;Lim, Young-Jun;Kim, Haeyoung;Koo, Ki-Tae
    • Journal of Periodontal and Implant Science
    • /
    • 제49권1호
    • /
    • pp.25-38
    • /
    • 2019
  • Purpose: This study evaluated differences in bone healing and remodeling among 3 implants with different surfaces: sandblasting and large-grit acid etching (SLA; IS-III $Active^{(R)}$), SLA with hydroxyapatite nanocoating (IS-III $Bioactive^{(R)}$), and SLA stored in sodium chloride solution ($SLActive^{(R)}$). Methods: The mandibular second, third, and fourth premolars of 9 dogs were extracted. After 4 weeks, 9 dogs with edentulous alveolar ridges underwent surgical placement of 3 implants bilaterally and were allowed to heal for 2, 4, or 12 weeks. Histologic and histomorphometric analyses were performed on 54 stained slides based on the following parameters: vertical marginal bone loss at the buccal and lingual aspects of the implant (b-MBL and l-MBL, respectively), mineralized bone-to-implant contact (mBIC), osteoid-to-implant contact (OIC), total bone-to-implant contact (tBIC), mineralized bone area fraction occupied (mBAFO), osteoid area fraction occupied (OAFO), and total bone area fraction occupied (tBAFO) in the threads of the region of interest. Two-way analysis of variance (3 types of implant $surface{\times}3$ healing time periods) and additional analyses for simple effects were performed. Results: Statistically significant differences were observed across the implant surfaces for OIC, mBIC, tBIC, OAFO, and tBAFO. Statistically significant differences were observed over time for l-MBL, mBIC, tBIC, mBAFO, and tBAFO. In addition, an interaction effect between the implant surface and the healing time period was observed for mBIC, tBIC, and mBAFO. Conclusions: Our results suggest that implant surface wettability facilitates bone healing dynamics, which could be attributed to the improvement of early osseointegration. In addition, osteoblasts might become more activated with the use of HA-coated surface implants than with hydrophobic surface implants in the remodeling phase.

표면처리 시간에 따른 임플란트 미세구조의 변화;SLA와 TB 표면 임플란트 (Microstructural Change of Implant Surface conditioned with Tetracycline-HCI;SLA and TB surface implant)

  • 우정아;허익;권영혁;박준봉;정종혁
    • Journal of Periodontal and Implant Science
    • /
    • 제35권4호
    • /
    • pp.921-937
    • /
    • 2005
  • Mechanical and chemical methods are the two ways to treat the implant surfaces. By using mechanical method, it is difficult to eliminate bacteria and by-products from the rough implant surface and it can also cause the structural change to the implant surface. Therefore, chemical method is widely used in order to preserve and detoxicate the implant surface more effectively. The purpose of this study is to evaluate the effect of tetracylcline- HCl on the change of implant surface microstructure according to application time. Implants with pure titanium machined surface, SLA surface and $TiO_2blasted$ surface were used in this study. Implant surface was rubbed with sponge soaked in 50mg/ml tetracycline - HCl solution for $\frac{1}{2}$ min., 1min., $1\frac{1}{2}$ min., 2 min., and $2\frac{1}{2}min.$ respectively in the test group and with no treatment in the control group. The sponge was soaked in every 30 seconds. Then, the specimens were processed for scanning electron microscopic observation. Based upon the analysis of photographs by three dentists who are not related with this study, the results were obtained as follows; 1. In the pure titanium machined surfaces, the control specimen showed a more or less rough machined surface composed of alternating positive and negative lines corresponding to grooves and ridges. After treatment, machining line was more pronounced for the control specimens. but in general, test specimens were similar to control. 2. In the SLA surfaces, the control specimen showed that the macro roughness was achieved by large-grit sandblasting. Subsequently, the acid-etching process created the micro roughness, which thus was superimposed on the macro roughness. Irrespective of the application time of 50mg/ml tetracycline - HCl solution, in general, test specimens were similar to control. 3. In the $TiO_2blasted$ surfaces, the control specimen showed the rough surface With small pits. The irregularity of the $TiO_2blasted$ surfaces with 50mg/ml tetracycline - HCl solution was lessened and the flattened areas got wider after 1 minute.

염산티트라싸이클린의 적용시간에 따른 다공성 임프란트 표면 미세구조의 변화 (Microstructural Change of Porous Surface Implant conditioned with Tetracycline-hydrochloride)

  • 정재욱;허익;권영혁;박준봉;정종혁
    • Journal of Periodontal and Implant Science
    • /
    • 제36권2호
    • /
    • pp.319-334
    • /
    • 2006
  • Mechanical and chemical methods are the two ways to treat the implant surfaces. By using mechanical method, it is difficult to eliminate bacteria and by-products from the rough implant surface and it can also cause the structural change to the implant surface. Therefore, chemical method is widely used in order to preserve and detoxicate the implant surface more effectively. The purpose of this study is to evaluate the effect of tetracylcline-hydrochloride(TC-HCI) on the change of implant surface microstructure according to application time. Implants with pure titanium machined surface, SLA surface and porous surface were used in this study. Implant surface was rubbed with sponge soaked in 50mg/ml TC-HCI solution for $\frac{1}{2}$ min., 1 min., $1\frac{1}{2}$ min., 2 min., and $2\frac{1}{2}$ min. respectively in the test group and with no treatment in the control group. Then, specimens were processed for scanning electron microscopic observation. 1. Both test and control group showed a few shallow grooves and ridges in pure titanium machined surface implants. There were not significant differences between two groups. 2. In the SLA surfaces, the control specimen showed that the macro roughness was achieved by large-grit sandblasting. Subsequently, the acid-etching process created the micro roughness, which thus was superimposed on the macro roughness. Irrespective of the application time of 50mg/ml TC-HCI solution, in general, test specimens were similar to control. 3. In the porous surfaces, the control specimen showed spherical particles of titanium alloy and its surface have a few shallow ridges. The roughness of surfaces conditioned with tetracycline-HCI was lessened and seen crater-like irregular surfaces relative to the application time. In conclusion, pure titanium machined surfaces and SLA surfaces weren't changed irrespective of the application time of tetracycline-HCI solution. But the porous surfaces conditioned with tetracycline-HCI solution began to be slightly changed from 2 min. This results are expected to be applied to the regenerative procedures for peri-implantitis treatment.

염산테트라싸이클린의 적용시간에 따른 임플란트 표면변화에 관한 주사전자현미경적 연구 (Scanning Electron Microscopic Study of the Effect of Tetracycline-HCl on the Change of Implant Surface Microstructure according to Application Time)

  • 김우영;이만섭;박준봉;허익
    • Journal of Periodontal and Implant Science
    • /
    • 제32권3호
    • /
    • pp.523-537
    • /
    • 2002
  • The present study was performed to evaluate the effect of tetracycline - HCl on the change of implant surface microstructure according to application time. Implants with pure titanium machined surface, SLA surface and $TiO_2blasted$ surface were used. Implant surface was rubbed with 5Omg/ml tetracycline - HCl solution for ${\frac}{1}{2}$ min., 1 min., $1{\frac}{1}{2}$ min., 2 min., and 3min. respectively in the test group and with no conditioning in the control group. Then, the specimens were processed for scanning electron microscopic observation. The following results were obtained. 1. In the pure titanium machined surfaces, the control specimen showed a more or less rough machined surface composed of alternating positive and negative lines corresponding to grooves and ridges. After treatment, machining line was more pronounced for the control specimens. but in general, test specimens were similar to control. 2. In the SLA surfaces, the control specimen showed that the macro roughness was achieved by large-grit sandblasting. subsequently, the acid-etching process crated the micro roughness, which thus was superimposed on the macro roughness. 3. In the SLA surfaces, irrespective of the application time of 50mg/ml tetracycline-HCl solution, in general, test specimens were similar to control. 4. In the $TiO_2blasted$ surfaces the control specimen showed the rough surface with small pits. The irregularity of the $TiO_2blasted$ surfaces with 50mg/ml tetracycline-HCl solution was lessened and the flattened areas were wider relative to the application time of tetracycline - HCl solution. In conclusion, pure titanium machined surfaces and SLA surfaces weren't changed irrespective of the application time of tetracycline-HCl solution. And the $TiO_2blasted$ surfaces conditioned with tetracycline - HCl solution began to be changed from $1{\frac}{1}{2}$ min. This results are expected to be applied to the regenerative procedures for peri-implantitis treatment.

산-처리 조건이 RBM처리한 티타늄 임플란트의 표면 특성에 주는 영향 (Effects of acid-treatment conditions on the surface properties of the RBM treated titanium implants)

  • 이한아;석수황;이상혁;임범순
    • 대한치과재료학회지
    • /
    • 제45권4호
    • /
    • pp.257-274
    • /
    • 2018
  • 본 논문에서는 순수 티타늄(cp-Ti) 임플란트를 SLA (Sandblasting with Large grit and Acid) 처리할 때 산-처리 용액의 유형, 산-처리 온도 및 산-처리 시간 등이 티타늄 표면에 주는 영향을 평가하고자 하였다. 원판형의 cp-Ti 시편을 준비하여 표면을 인산칼슘계 세라믹 분말로 RBM (Resorbable Blast Media) 처리하였다. 산-처리 용액으로 염산을 30 vol%로 고정하고 황산의 농도를 10, 20, 30, 35 vol%로 증가시키며 혼합한 용액에 증류수를 추가하여 4종의 산-처리 용액을 준비하였다. 실험군은 4종의 산-처리 용액, 3 종의 처리온도 및 3 종의 처리시간 등 36 가지로 분류하여 실험군당 4개의 시편을 산-처리하였다. 산-처리 전 후 시편 무게를 전자저울로 측정하여 무게 감소비율을 계산하였고, 공초점주사전자현미경으로 표면거칠기를 측정하였다. X-선 회절분석기(XRD)로 XRD 패턴을 측정하였고, 주사전자현미경으로 표면 형상을 관찰하였으며, 에너지 분산형 분석기(EDX)와 광전자분광법(XPS)로 표면성분을 분석하였다. 무게 감소비율과 표면거칠기 측정값은 Tukey-multiple comparison test (p = 0.05)로 통계 분석하여 다음의 결과를 얻었다. 산-처리에 따른 티타늄 시편의 무게 감소는 황산의 농도 및 산-처리 용액의 온도가 높을수록 유의하게 증가하였다. 산-처리한 티타늄의 표면 거칠기는 산-처리 조건(황산 농도, 온도, 시간)에 일정한 영향을 받지 않았다. XRD 분석에서 산-처리한 모든 시편에서 티타늄(${\alpha}-Ti$)과 수소화 티타늄($TiH_2$) 결정상이 관찰되었고, XPS 분석으로 티타늄 표면에 얇은 n산화 티타늄 층이 형성된 것을 알 수 있었다. $90^{\circ}C$ 산-용액에서 처리할 경우 티타늄 표면이 과도하게 용해될 수 있으므로 주의하여야 한다.