• Title/Summary/Keyword: Sand wave

Search Result 264, Processing Time 0.026 seconds

Seasonal Variation of Surface Sediments in 2014 on the Gochang Open-Coast Intertidal Flat, Southwestern Korea (고창 개방형 조간대 표층 퇴적물의 2014년 계절 변화)

  • Kang, Sol-Ip;Ryang, Woo-Hun;Jin, Jae-Hwa;Chun, Seung-Soo
    • Journal of the Korean earth science society
    • /
    • v.37 no.2
    • /
    • pp.89-106
    • /
    • 2016
  • The Gochang open-coast intertidal flat is located in the southwestern coast of Korea (the eastern part of the Yellow Sea), characterized by macro-tidal range, an open-coast type, and sand substrates. This study has investigated seasonal variation in sedimentary facies of surface sediments in the Gochang intertidal flat. In the four seasons of February, May, August, and November, 2014, surface sediments of 252 sites in total were sampled and analyzed along three survey lines. The surface sediments of the Gochang intertidal flat in 2014 consisted mainly of fine-grained sand sediments showing a trend in grain size to be coarser in winter and finer in summer. Based on seasonal wave and tidal level data recorded near the study area, it was interpreted that the seasonal effects of wave were stronger than those of tide as a factor controlling surface sedimentation. High waves in winter resulted in the coarsening trend of grain size in surface sediments, whereas, during summer time, the sediments became finer by relatively low waves. Spatial sedimentary facies of the Gochang intertidal flat in 2014 represented that seasonal deviation of the upper tidal zone was larger than that of the lower tidal zone, hence sediments getting coarser in grain size and poorly sorted in the upper tidal zone. From upper to lower tidal zone, the grain size became finer and sediments were better-sorted, showing smaller seasonal deviations.

Inverse Estimation of Geoacoustic Parameters in Shallow Water Using tight Bulb Sound Source (천해환경에서 전구음원을 이용한 지음향인자의 역추정)

  • 한주영;이성욱;나정열;김성일
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.8-16
    • /
    • 2004
  • An inversion method is presented for the determination of the compressional wave speed, compressional wave attenuation, thickness of the sediment layer and density as a function of depth for a horizontally stratified ocean bottom. An experiment for estimating those properties was conducted in the shallow water of South Sea in Korea. In the experiment, a light bulb implosion and the propagating sound were measured using a VLA (vertical line array). As a method for estimating the geoacoustic properties, a coherent broadband matched field processing combined with Genetic Algorithm was employed. When a time-dependent signal is very short, the Fourier transform results are not accurate, since the frequency components are not locatable in time and the windowed Fourier transform is limited by the length of the window. However, it is possible to do this using the wavelet transform a transform that yields a time-frequency representation of a signal. In this study, this transform is used to identify and extract the acoustic components from multipath time series. The inversion is formulated as an optimization problem which maximizes the cost function defined as a normalized correlation between the measured and modeled signals in the wavelet transform coefficient vector. The experiments and procedures for deploying the light bulbs and the coherent broadband inversion method are described, and the estimated geoacoustic profile in the vicinity of the VLA site is presented.

Dissolution Monitoring of Geo-Soluble Mixtures (지반 소실 혼합재의 용해과정 모니터링)

  • Truong, Q. Hung;Byun, Yong-Hoon;Eom, Yong-Hun;Sim, Young-Jong;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.111-122
    • /
    • 2009
  • Dissolution of some of geo-materials may yield the loss of the soil strength and the settlement of earth structures. The goal of this study is to monitor the several physical behaviors of soluble mixtures during dissolution. Sand-salt mixtures are used to monitor the meso to macro response including the settlements and shear waves. The mixtures of photoelastic and ice disks are used to monitor micro to meso behavior of soluble mixture including the void ratio, force chain, coordination number and horizontal force changes. In the sand-salt mixtures, shear waves are measured by using bender elements in conventional oedometer cells. In the photoelastic disk - ice disk mixtures, micro to meso response are measured by digital images and load cells. The shear wave velocity decreases at the initial stage of the dissolution, and then increases and approaches to asymptotic value. The larger dissoluble particle and the more random packing produces the severe horizontal fore change. After dissolution, the void increases and the coordination number decreases. This study demonstrates that the particle level behavior such as the changes of the force chain, void ratio, and coordination number affects the global behavior such as the change of the shear wave velocity and horizontal force of the system.

Compressibility and Stiffness Characteristics of Vanishing Mixtures (지반 소실 혼합재의 압축성 및 강성 특성)

  • Truong, Q. Hung;Eom, Yong-Hun;Yoon, Hyung-Koo;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.103-111
    • /
    • 2008
  • Soils naturally contain grains of different minerals which may be dissolved under chemical or physical processes. The dissolution leads changes in microstructure of particulate media, such as an increase in local void or permeability, which affects the strength and deformation of soils. This study focuses on the small strain stiffness characteristics of vanishing mixtures, which consist of sand and salt particles at different volume fractions. Experiments are carried out in a conventional oedometer cell (Ko-loading) integrated with bender elements for the measurement of shear waves. Dissolutions of particles are implemented by saturating the mixtures at various confining stresses. Axial deformation and shear waves are recorded after each loading stage and during dissolution process. Experimental results show that after dissolution, the vertical strain and the void ratio increase, while the shear wave velocity and small strain shear modulus decrease. The decrease of the velocity results from the void ratio increase and particle contact decrease. The process monitoring during dissolution of the particles shows that the vertical strain dramatically increases at the beginning of the saturation process and converges after vanishing process finishes, and that the shear wave velocity decreases at the beginning and increases due to the particle reorientation. Specimens prepared by sand and salt particles are proved to be able to provide a valuable insight in macro structural behaviors of the vanishings mixtures.

Estimation of Groundwater Table using Ground Penetration Radar (GPR) in a Sand Tank Model and at an Alluvial Field Site (실내 모형과 현장 충적층에서 지하투과레이더를 이용한 지하수면 추정)

  • Kim, Byung-Woo;Kim, Hyoung-Soo;Choi, Doo-Houng;Koh, Yong-Kwon
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.201-216
    • /
    • 2013
  • Ground penetrating radar (GPR) surveys were conducted in a sand tank model in a laboratory and at an alluvial field site to detect the groundwater table and to investigate the influence of saturation on GPR response in the unsaturated zone. In the sand tank model, the groundwater table and saturation in the sand layer were altered by injecting water, which was then drained by a valve inserted into the bottom of the tank. GPR vertical reflection profile (VRP) data were obtained in the sand tank model for rising and lowering of the groundwater table to estimate the groundwater table and saturation. Results of the lab-scale model provide information on the sensitivity of GPR signals to changes in the water content and in the groundwater table. GPR wave velocities in the vadose zone are controlled mainly by variations in water content (increased travel time is interpreted as an increase in saturation). At the field site, VRP data were collected to a depth of 220 m to estimate the groundwater table at an alluvial site near the Nakdong river at Iryong-ri, Haman-gun, South Korea. Results of the field survey indicate that under saturated conditions, the first reflector of the GPR is indicative of the capillary fringe and not the actual groundwater table. To measure the groundwater table more accurately, we performed a GPR survey using the common mid-point (CMP) method in the vicinity of well-3, and sunk a well to check the groundwater table. The resultant CMP data revealed reflective events from the capillary fringe and groundwater table showing hyperbolic patterns. The normal moveout correction was applied to evaluate the velocity of the GPR, which improved the accuracy of saturation and groundwater table information at depth. The GPR results show that the saturation information, including the groundwater table, is useful in assessing the hydrogeologic properties of the vadose zone in the field.

Improvements in the Marine Environmental Survey on Impact of Seawater Qualities and Ecosystems due to Marine Sand Mining (바다모래 채취 시 해수 수질 및 생태계 영향에 대한 해양환경조사 개선 방안)

  • Kim, Yeong-Tae;Kim, Gui-Young;Jeon, Kyeong-Am;Eom, Ki-Hyuk;Kim, In-Chul;Choi, Bo-Ram;Kim, Hee-Jung;Kim, Jin-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.143-156
    • /
    • 2014
  • We reviewed investigation status on turbidity plume in the statement of marine environmental survey(2008 to 2012) associated with marine sand extraction projects. The survey statement from seven marine sand extraction sites (extraction area of Southern EEZ, extraction area of Western EEZ, relocation zone in the Western EEZ, sea area under jurisdiction of Taean-gun, sea area under jurisdiction of Ansan City, and two discrete sea areas under jurisdiction of Ongjin-gun) in the nearshore and offshore of Korea showed that in situ observations were carried out for the dispersion and transport of suspended sediments on two areas (One is a extraction area in the EEZs, the other is an area of coastal sites). However, sampling station and range have not been selected considering physical, geographical factors (tide, wave, stratification, water depth, etc.) and weather conditions (wind direction and velocity, fetch, duration, etc). Especially turbidity plumes originating from three sources, which include suspended sediments in overflow(or overspill) discharged from spillways and reject chutes of dredging vessel, and resuspended sediments from draghead at the seabed, may be transported to a far greater distance outside the boundary of the extraction site and have undesirable impacts on the marine environment and ecosystem. We address that behaviour of environmental pollutants such as suspended solids, nutrients, and metals should be extensively monitored and diagnosed during the dispersion and transport of the plume. Finally we suggest the necessity to supplement the current system of the sea area utilization consultation and establish the combined guidelines on marine sand extraction to collect basic data, to monitor cumulative effects, and to minimize environmental damages incurred by the aftermath of sand extraction.

The Sound Velocity and Attenuation Coefficient of the Marine Surface Seciments in the nearshore area, Korea (韓半島 沿近海底 表層堆積物에서의 音波傳達速度와 減衰係數)

  • 김성;석봉출
    • 한국해양학회지
    • /
    • v.20 no.2
    • /
    • pp.10-21
    • /
    • 1985
  • The sound velocity (compressional wave) and attenuation coefficient in the marine surface sediments in the nearshore areas off the Pohang, Pusan, Yeosu and Kunsan were investigated in terms of the geotechnical properties of the marine surface sediments in the water depth range of 10-50 meters. The marine surface sediments in the study areas are variable, that is, sand to clay. Due to the various four different study area, the sound velocities and attenuation coefficients in the surface sediment facies vary 1,44m/sec to 1,510m/sec in velocity and 0.82dB/m to 3.70dB/m in coefficient respectively. In fact, the sound velocity increases with increasing of density and mean grain sizes of the sediments, and however, with decreasing of porosith. The correlation equations between the sound velocith and geotechnical properties of mean grain size, density, and porosity were expressed as the following: Vp=1512.28406-9.16083(Mz)+0.20795(Mz)$\^$2/, Vp=1876.15527-597.50397(d)+210.48375(d)$\^$2/, Vp=1559.47217-2.09266(n)$\^$2/. where Vp is sound velocity, Mz is mean grain size, d is density, and m is porosity, respectively. However, the relationship between the attenuation and geotechnical properties were different from that of sound velocity and geotchnical properties. Furthermore, the correlation equations between attenuation coefficient and geotechnical properties were expressed as the following: a=1.85217+0.67197(Mz)-0.09035 (Mz)$\^$2/, a=48.87859+58.21721(d)-16.3.143(d)$\^$2/, a=2.06765+0.07215(n)-0.00111(n)$\^$2/, where a is attenuation coefficient. The high attenuation appeared in the silty sand through fine sand facies in sediment and k values in these facies were in the range of 0.86 to 0.89 dB/m/KHz.

Spatial Characteristics of Vegetation Development and Groundwater Level in Sand Dunes on a Natural Beach (해안사구의 지하수위와 식생 발달의 공간적 특성 연구)

  • Park, JungHyun;Yoon, Han-sam;Jeon, Yong-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.3
    • /
    • pp.218-226
    • /
    • 2016
  • Field observations were used to study the characteristics and influence of groundwater level fluctuations on vegetation development on the natural beach of a sandy barrier island, in the Nakdong River estuary. The spatial/temporal fluctuations of the groundwater level and the interactions with the external forces (weather, ocean wave and tide) were analyzed. The results indicated that when it rains the groundwater level rises. During summer, when precipitation intensity is greater than 20 mm/hour, it rose rapidly over 20 cm. Subsequently, it fell gradually during periods of no precipitation. Seasonal characteristics indicated that the groundwater level was high during the summer rainy season and tended to fall in the winter dry season. The time-averaged groundwater level, observed from the four observations over 3 years (2012-2014), was about 1.47 m, higher than mean sea level (M.S.L.). It was shown that the average annual groundwater level rises toward the land rather than showing intertidal patterns observation. Differences in the presence or absence of a coastal sand dunes affected the progress of vegetation. In other words, in environments of saltwater intrusion where the groundwater level varies, dependent on the distance from the shoreline and bottom slope, sand dunes can be provided to affect soil conditions and groundwater, so that vegetation can be grown reliably.

Maximum Shear Modulus of Sand - Tire Chip Mixtures under Repetitive KO Loading Conditions (반복하중 재하 시 모래-타이어칩 혼합토의 최대전단탄성계수 변화)

  • Ryu, Byeonguk;Park, Junghee;Choo, Hyunwook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.41-50
    • /
    • 2021
  • This study investigated the changes in engineering characteristics of sand-tire chip mixtures during repetitive loading. To quantify the changes in the maximum shear modulus according to the tire chip content in the mixtures and the particle size ratio between sand particle and tire chip, the samples were prepared with tire chip content of TC = 0, 10, 20, 40, 60, and 100%, and the particle size ratios SR were also set to be SR = 0.44, 1.27, 1.87, and 4.00. The stress of the prepared sample was applied through a pneumatic cylinder. The experiment was conducted in the order of static loading (= 50 kPa), cyclic loading (= 50-150 kPa), static loading (= 400 kPa) and unloading. The stress applied to tested mixtures was controlled by a pressure panel and a pneumatic valve by using an air compressor. The shear wave velocity was measured during static and cyclic loadings by installing bender elements at the upper and lower caps of the mold. The results demonstrated that the change in maximum shear modulus of all tested materials with varying SR during repetitive loading is the most significant when TC ~ 40%. In addition, the mixture with smaller SR at a given TC shows greater increase in maximum shear modulus during repetitive loading.

Characteristic Analysis on Mixed Filler of Conservation Materials for Stone Cultural Heritage (석조문화재 보존처리에 사용되는 혼합충전제의 특성분석)

  • Song, Chi-Young;Han, Min-Su;Lee, Jang-Jon;Jun, Byung-Kyu;Do, Min-Hwan
    • Journal of Conservation Science
    • /
    • v.25 no.4
    • /
    • pp.439-450
    • /
    • 2009
  • The purpose of this study is to find out characteristics of the fillers made by epoxy resin (L-30) and filling epoxy resin (L-50) with talc, quartz sand and wollastonite with different mixture ratio of 5%, 50%, 80%, 120%, and 150%. The viscometer and colorimeter were used to measure the viscosity and chromaticity of the fillers. Additionally, IC and SEM were used to reveal characteristics of the filler, and checked ultrasonic wave velocity, compressive strength and contact angle to estimate the stability between the filler and stones which are essential for conservation treatments. The filler mixed with the talc had the lowest value in the ultrasonic wave velocity analysis, and its compressive strength decreased as the mixing rate of talc increased. On the other hand, wollastonite had higher values than others in the ultrasonic wave velocity and the compressive strength regardless of epoxy resin type, also, these values increased as mixing rate increased. The properties of the filler, which include the granularity and shape, have influence on characteristics of the stone conservation adhesives. Thus, the filler type, characteristic, and mixture ratio must be considered for effective conservation treatment.

  • PDF