• Title/Summary/Keyword: Sand casting

Search Result 109, Processing Time 0.032 seconds

A Study on the Design and Simulation of Sand Casting for Alumimum Turbo Fan in Tank Powerpack (전차 파워팩에 적용되는 알루미늄 터보 팬의 주조방안 설계 및 주조 해석에 관한 연구)

  • Jin, Chul-Kyu;Lee, Un-Gil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.889-898
    • /
    • 2022
  • In this study, sand casting process was applied to manufacture a large aluminum turbo-type fan used for tank powerpack. To apply the sand casting method, the turbo fan was reverse engineered, and after designing three gating systems, the optimal gating system design was selected by performing casting simulation. In the case of the bottom up-gating system, there is a significant temperature loss of the molten alloy during blade filling. When the molten alloy is completely filled into the sand mold, the blade upper tip and front shroud are below the liquidus temperature. In the case of the top down-gating system, molten alloy scattering occurs, but the temperature loss while the blade is filled is smaller than that of the bottom up type. And after the inflow of molten alloy into the mold is completed, the blade upper tip and front shroud are higher than the liquidus temperature. A sand mold was manufactured with the top down-gating system and the casting process was performed. The fan was made perfectly in appearance without any unfilled parts.

A study on the Identification of Sources for Benzene Detected in the Casting Process (주조공정에서의 벤젠 발생원 규명에 관한 연구)

  • Oh, Doe Suk;Lee, Seong Min;Lee, Byoung Jae;Kim, Young Ju
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.1
    • /
    • pp.27-35
    • /
    • 2006
  • The aim of this study was to identify the sources of benzene detected in airborne of casting workplace where benzene was not used as raw material. We have identified benzene by GC/FID and GC/MSD. In this pilot test, small size iron chamber(diameter 30 cm, height 20 cm) was used. As the raw materials, new sand, recovered sand, and mixed casting sand(new sand + solidifying agent + organic resin + coating material) was tested, respectively. In the new sand benzene was not detected, but in the recovered sand and the mixed casting sand was detected. Xylenesulfonic acid(solidifying agent), one of the mixed casting sand ingredients was thought to product benzene by thermal decomposition above $400^{\circ}$..., but the other raw materials(organic resin and coating material) were thought not to product benzene. In this experiment, the most of benzene by thermal decomposition was produced within 1 hour after pouring the iron solution($1560^{\circ}$...) in small size iron chamber. When the mixed casting sand with coating material was used, the concentration of the produced benzene was average 2.91 ppm(range 1.98~3.72 ppm), and without coating material, benzene concentration was average 0.11 ppm(range 0.08~0.14 ppm).

Sand Behavior in Casting Mold Fabrication (주형제작과정에서의 주물사 거동)

  • 최우천;신평균
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.164-170
    • /
    • 2000
  • Important factors in a casting mold are strength at the mold surface and gas permeability of the mold. This study investigates the effects of pre-pressure and sand particle hardness on gas permeability, with a constraint that the norm of a stiffness array at the mold surface should be higher than a certain value. The constitutive relation is obtained using a hypoplasticity model. This study is firstly attempted to investigate sand behavior in mold fabrication, and will give a theoretical base for fabricating better molds.

  • PDF

A study on the reduction of blow hole defects in aluminum sand casting (알루미늄 사형주조에서 기공 결함 감소를 위한 연구)

  • Lee, Dong-Youn;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.52-57
    • /
    • 2020
  • In this study attempted to prevent defects due to blow holes among defects of sand casting products. It was intended to reduce the defect rate by reducing the blow hole of the inner surface. Currently, expectations and requirements for the quality level of non-ferrous aluminum casting in the casting industry are increasing. In addition, the shape is complex and the shrinkage precision is required. Among them, the test prototype is expensive to manufacture the mold, and the production time is also long, and the product is manufactured by sand casting. At this time, the highest defect rates are defects caused by shrinkage defects, surface defects, and blow holes.. At this study, the manufacturing time was shortened by using the shape of the fluid movement path in advance. Also, it is possible to reduce defects due to blow holes.

Development of Sleeve Parts for Continuous Hot Zinc Plating Roll Applied to Wear-Resistant Alloy Cast Steel

  • Park, Dong-Hwan;Hong, Jin-Tae;Kwon, Hyuk-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.357-364
    • /
    • 2017
  • Metal casting is a process in which molten metal or liquid metal is poured into a mold made of sand, metal, or ceramic. The mold contains a cavity of the desired shape to form geometrically complex parts. The casting process is used to create complex shapes that are difficult to make using conventional manufacturing practices. For the optimal casting process design of sleeve parts, various analyses were performed in this study using commercial finite element analysis software. The simulation was focused on the behaviors of molten metal during the mold filling and solidification stages for the precision and sand casting products. This study developed high-life sleeve parts for the sink roll of continuous hot-dip galvanizing equipment by applying a wear-resistant alloy casting process.

Sand Casting Process Design for the Bush Parts of the Continuous Hot Zinc Plating Roll Applied to Wear-Resistant Alloy Cast Steel (내마모 합금주강 소재를 적용한 연속용융아연도금설비 Roll용 부쉬의 사형 주조공정 설계)

  • Park, Dong-Hwan;Yun, Jae-Jung;Hong, Jin-Tae;Kwon, Hyuk-Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.104-112
    • /
    • 2017
  • In the sand casting process, the flow of liquid metal affects the quality of casting products and their die life. To determine the optimal bush part design process, this study performed various analyses using commercial finite element analysis S/W. The simulation focused on the molten metal behaviors during the mold filling and solidification stages of sand casting. This study aims to develop methods to reduce the cost and increase the tool life of the continuous hot zinc plating roll.

Investigation on Characteristics of Various Mold Packing Materials in Lost Foam Casting of Aluminum Alloy (알루미늄 합금 소실모형주조 시의 주형충전재에 따른 특성변화)

  • Kim, Ki-Young;Lee, Kyung-Whoan;Rim, Kyung-Hwa
    • Journal of Korea Foundry Society
    • /
    • v.22 no.3
    • /
    • pp.137-143
    • /
    • 2002
  • Silica sand, zircon sand, and steel shots were used as mold packing materials in lost foam casting of the aluminum alloy bar. Vibration acceleration in three directions and temperatures in the casting and mold were measured, and packing and cooling characteristics of these materials were investigated. Packing densities increased with increase in vibration magnitude and time, and were $1.41{\sim}1.49g/cm^2$ for silica sand, $2.54{\sim}2.86g/cm^2$ for zircon sand, and $3.92{\sim}4.52g/cm^2$ for steel shots. Sound castings were obtained only without evacuation of the flask during pouring. Solidification time became faster in order of silica sand, zircon sand and steel shot packing because steel shot has the highest cooling capacity of them. Solidification time of steel shot packing was shortened to about 1/2 of silica sand packing. Cooling capacity of sand mold was generally evaluated by heat diffusivity of the mold, however could be simply evaluated with specific heat per unit volume of the packing material in lost foam casting.

A Study on Development of Safety Shell Molds for Precision Machining of Sand Mold Casting Product (사형제품 기계가공을 위한 안전금형 개발에 관한 연구)

  • Choi, Jae-Hoon;Nam, Seung-Done
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.179-184
    • /
    • 2013
  • An accident from machine work is often fatal to the worker. This accident is mostly preventable through perfect process jig. In case of this machine work, however, the disaster frequently occurred because of the design which is not considered the beginning of product design, post-process and mass process of production. As for sand casting method, this has the merits of the production; the product is easily produced by manual labor. On the other hand, this method has the demerits of a bigger dimensional error contrary to other mass process of production. When the sand casting product is in machine work, there are various problems such as unsafe fix and excessive cutting, product desorption and rapid life depreciation of equipment and tools. Considering the characteristics of sand casting method, it is accepted as difficulty to improve the problems. In this study, it suggests shell mold method for mold instead of the machine work after the sand casting of the circle shape container product. And the surface accomplishes the following average of surface roughness Ra$9.94{\mu}m$ of machine work with the casting of flask mold by shell mold method. In accordance with the simplification of processing process and reducing the average thickness variation by mass production of product with detailed appearance, it has a good influence on safety accident prevention caused by production and damaged product. It is confirmed that making higher degree of size precision of all machine work product is possible to increase the safety and productivity, reduce the processing process and improve environment.

Selection of Artificial Sand Suitable for Manufacturing Steel Castings through Evaluation of Various Foundry Sand Properties (각종 주물사의 특성과 주강품 주조에 적합한 인공사 선택)

  • Gwang-Sik Kim;Jae-Hyung Kim;Myeong-Jun Kim;Ji-Tae Kim;Ki-Myoung Kwon;Sung-Gyu Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.3
    • /
    • pp.107-136
    • /
    • 2023
  • Natural silica sand was commonly used for sand casting of cast steel products, and chromites sand was used to suppress seizure defects due to the lack of thermal properties of silica sand. However there are disadvantages such as deterioration by repeated use, system sand mixing problem, difficulty separating and removing, increased during mold according to high density and to being waste containing chrome. Recently, industrial waste reduction and atmospheric environment improvement have been highlighted as important tasks in the casting industry. In order to solve the problems that occur when using foundry Sand and to improve the environment of casting factories, various artificial sands that can be applied instead of natural silica sand have been developed and introduced. Artificial sands can be classified into artificial sand manufactured by the electric arc atomization or gas flame atomization, artificial sand manufactured by the spray drying & sintering process, artificial sand manufactured by the sintering & crushing process and exhibit different physical properties depending on the type of raw-minerals and manufacturing method. In this study, comparative evaluation tests were conducted on the physical properties of various foundry sands, mold strength, physical durability, thermal durability, and casting test pieces. When comprehensively considering the actual amount of molding sand used according to density, the mold strength according to the shape of sand, the physical and thermal durability of foundry sand, and the heat resistance characteristics of foundry sand, 'Molten artificial sand A1' or 'Molten artificial sand B' is judged to be the most suitable spherical artificial sand for casting of heavy steel castings.

The Restoration Technology and Scientific Analysis of Bronze Mirror with Fine Linear Designs (청동잔무늬거울의 복원제작기술과 과학적 분석)

  • Yun, Yong Hyun;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.28 no.4
    • /
    • pp.417-425
    • /
    • 2012
  • Bronze Mirror with fine linear designs in the bronze age shows the greatest alloy and casting skills of the day and presents the highest level of handcrafting and molding techniques. Lately, Lost-wax casting and sand-mould casting were used for the restoration of the national treasures of No. 141 and No. 143 Bronze Mirror with fine linear designs. Also the Principle Component Analysis, Microstructure Analysis, X-ray and SEM-EDS analysis were carried out on the restored Bronze Mirror with fine linear designs. Bronze Mirror that is made of sand-mould casting, hardly has a eutectoid and it is observed as a ${\alpha}$ dendrite. In contrast, Bronze Mirror that is made of lost-wax casting, the eutectoid has found through the ${\alpha}$ dendrite. As we compare lost-wax casting to the sand-mould casting through an analysis of restored Bronze Mirror, mostly, sand-mould casting has better castability and it seems that it brings a clear and equal Bronze Mirror as it has a low cooling rate. In this way, we are able to confirm that there is a big difference between the method by lost-wax casting and by sand-mould casting through an analysis of microstructure and restored Bronze Mirror. If such research will be continued, it will be an opportunity that investigates diverse methods of production techniques.