• 제목/요약/키워드: Sand capture

검색결과 35건 처리시간 0.023초

Investigation of effects of twin excavations effects on stability of a 20-storey building in sand: 3D finite element approach

  • Hemu Karira;Dildar Ali Mangnejo;Aneel Kumar;Tauha Hussain Ali;Syed Naveed Raza Shah
    • Geomechanics and Engineering
    • /
    • 제32권4호
    • /
    • pp.427-443
    • /
    • 2023
  • Across the globe, rapid urbanization demands the construction of basements for car parking and sub way station within the vicinity of high-rise buildings supported on piled raft foundations. As a consequence, ground movements caused by such excavations could interfere with the serviceability of the building and the piled raft as well. Hence, the prediction of the building responses to the adjacent excavations is of utmost importance. This study used three-dimensional numerical modelling to capture the effects of twin excavations (final depth of each excavation, He=24 m) on a 20-storey building resting on (4×4) piled raft. Because the considered structure, pile foundation, and soil deposit are three-dimensional in nature, the adopted three-dimensional numerical modelling can provide a more realistic simulation to capture responses of the system. The hypoplastic constitutive model was used to capture soil behaviour. The concrete damaged plasticity (CDP) model was used to capture the cracking behaviour in the concrete beams, columns and piles. The computed results revealed that the first excavation- induced substantial differential settlement (i.e., tilting) in the adjacent high-rise building while second excavation caused the building tilt back with smaller rate. As a result, the building remains tilted towards the first excavation with final value of tilting of 0.28%. Consequently, the most severe tensile cracking damage at the bottom of two middle columns. At the end of twin excavations, the building load resisted by the raft reduced to half of that the load before the excavations. The reduced load transferred to the piles resulting in increment of the axial load along the entire length of piles.

Application of Digital Image Correlations (DIC) Technique on Geotechnical Reduced-Scale Model Tests

  • Tong, Bao;Yoo, Chungsik
    • 한국지반신소재학회논문집
    • /
    • 제21권1호
    • /
    • pp.33-48
    • /
    • 2022
  • This paper presents illustrative examples of the application of advanced digital image correlation (DIC) technology in the geotechnical laboratory tests, such as shallow footing test, trapdoor test, retaining wall test, and wide width tensile test on geogrid. The theoretical background of the DIC technique is first introduced together with fundamental equations. Relevant reduced-scale model tests were then performed using standard sand while applying the DIC technique to capture the movement of target materials during tests. A number of different approaches were tried to obtain optimized images that allow efficient tracking of material speckles based on the DIC technique. In order to increase the trackability of soil particles, a mix of dyed and regular sand was used during the model tests while specially devised painted speckles were applied to the geogrid. A series of images taken during tests were automatically processed and analyzed using software named VIC-2D that automatically generates displacements and strains. The soil deformation field and associated failure patterns obtained from the DIC technique for each test were found to compare fairly well with the theoretical ones. Also shown is that the DIC technique can also general strains appropriate to the wide width tensile test on geogrid, It is demonstrated in this study that the advanced DIC technique can be effectively used in monitoring the deformation and strain field during a reduced-scale geotechnical model laboratory test.

Unidirectional cyclic shearing of sands: Evaluation of three different constitutive models

  • Oscar H. Moreno-Torres;Cristhian Mendoza-Bolanos;Andres Salas-Montoya
    • Geomechanics and Engineering
    • /
    • 제35권4호
    • /
    • pp.449-464
    • /
    • 2023
  • Advanced nonlinear effective stress constitutive models are started to be frequently used in one-dimensional (1D) and two-dimensional (2D) site response analysis for assessment of porewater generation and liquefaction potential in soft soil deposits. The emphasis of this research is on the assessment of the implementation of this category of models at the element stage. Initially, the performance of a coupled porewater pressure (PWP) and constitutive models were evaluated employing a catalogue of 40 unidirectional cyclic simple shear tests with a variety of relative densities between 35% and 80% and effective vertical stresses between 40 and 80 kPa. The authors evaluated three coupled constitutive models (PDMY02, PM4SAND and PDMY03) using cyclic direct simple shear tests and for decide input parameters used in the model, procedures are recommended. The ability of the coupled model to capture dilation as strength is valuable because the studied models reasonably capture the cyclic performance noted in the experiments and should be utilized to conduct effective stress-based 1D and 2D site response analysis. Sandy soils may become softer and liquefy during earthquakes as a result of pore-water pressure (PWP) development, which may have an impact on seismic design and site response. The tested constitutive models are mathematically coupled with a cyclic strain-based PWP generation model and can capture small-strain stiffness and large-strain shear strength. Results show that there are minor discrepancies between measured and computed excess PWP ratios, indicating that the tested constitutive models provide reasonable estimations of PWP increase during cyclic shear (ru) and the banana shape is reproduced in a proper way indicating that dilation and shear- strain behavior is well captured by the models.

DSC 이론을 기초로 한 액상화 영향인자들에 관한 연구 (A Study on the Influence Factors for Liquefaction Based on the Disturbed State Concept)

  • 박인준
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.361-368
    • /
    • 1998
  • The purpose of this study is to find out the factors affacting liquefaction potential by using DSC(disturded state concept) method and to verify these results through cyclic shear test (truly triaxial test and cyclic triaxial) on saturated sandy soil. Based on this reserch, the DSC method predictions were found to provide satisfactory correlation with the cyclic shear test. And the relationship between the factors affecting liquefaction characteristics--relative density(Dr0 and initial effective confining pressure and physical properties of the saturated sand --ξD and Dc--is found. If the relative density and the initial effective confining pressure increase, the number of cyclic grows up. This means that Dc is incresed and ξD is decreased. Therefore, the liquefaction potential can be evaluated and the factors affacting liquefaction potential can be investigated by using on DSC method. Finally, it is shown that the DSC method can capture the liquefaction mechanism.

  • PDF

빗물 재활용을 위한 모래 정화층의 폐색특성을 고려한 비점오염원 제거 예측 모델 연구 (A Prediction Model for Removal of Non-point Source Pollutant Considering Clogging Effect of Sand Filter Layers for Rainwater Recycling)

  • 안재윤;이동섭;한신인;정영욱;최항석
    • 한국지반공학회논문집
    • /
    • 제30권6호
    • /
    • pp.23-39
    • /
    • 2014
  • 인공 빗물 저류조는 도심지에 설치되어 빗물의 재활용이 가능하도록 한 친환경 우수유출 저감시설이나 지면에 내린 빗물을 직접 이용하기 위해서는 도심지의 초기강우에 포함된 고농도의 비점오염원을 정화할 수 있는 시설이 수반되어야 한다. 본 논문에서는 인공 빗물 저류조에 적용할 수 있는 비점오염원 정화시설로서 경제성과 정화효율이 우수한 토양여과시설을 채택하여 실제 비점오염물질에 대한 모래 정화층의 입도분포에 따른 폐색특성을 연구하였다. 이를 위해 일련의 실내 챔버시험을 수행하고 폐색이론에 의한 비점오염원 제거 예측 모델을 제시하였다. 우선, 실내 챔버시험은 미세입자로 구성된 점토와 서울시내 도로에서 채집된 실제 비점오염원으로 제조된 인공 오염수를 이용하여, 5종류의 다양한 입도로 구성된 모래 정화층을 대상으로 수행되었다. 실내 챔버시험에서는 모래 정화층에 유입 및 유출된 인공 오염수의 TSS(총 부유물질)와 COD(화학적 산소 요구량)를 측정하여 오염입자의 크기에 따른 모래 정화층의 정화효율을 평가하였고, 정화층 간극에 폐색되는 비점오염입자의 누적무게를 산출하였다. 다음으로, 모래 정화층의 폐색특성을 이론적으로 규명하기 위해 비점오염원 제거 예측모델을 모래 정화층의 입도와 구성에 따른 특성과 투수계수 및 간극률의 변화 조건을 고려하여 제시하였다. 실내 챔버시험과 예측 모델로부터 산정한 모래 정화층에 폐색된 입자의 누적무게를 비교하여 폐색특성 지표인 Lumped parameter ${\theta}$를 추정하였으며, ${\theta}$는 모래 정화층에 폐색되는 오염입자의 양에 큰 영향을 주는 것을 확인하였다. 모래 정화층의 폐색 예측모델로부터 현장 인공 빗물 저류조에 적합한 최적의 비점오염 제거 시스템으로 유효입경 1.49mm(상부)와 유효입경 0.93mm(하부)의 모래로 구성된 이중 정화층을 제시하였다.

'되먹임 기반' 사구 역학 모형의 호환 가능성에 대한 이론적 고찰 - 플럭스, 사면조정, 바람그늘 문제를 중심으로 - (Theoretical Investigations on Compatibility of Feedback-Based Cellular Models for Dune Dynamics : Sand Fluxes, Avalanches, and Wind Shadow)

  • 류호상
    • 한국지역지리학회지
    • /
    • 제22권3호
    • /
    • pp.681-702
    • /
    • 2016
  • 풍성사구는 바람, 모래 지면, 식생 간 상호작용의 결과로 발달하는 지형이다. 되먹임 기반 사구역학 모형은 풍성사구가 자기조직 현상에 의해 생성된다는 데 초점을 맞춘다. 풍속장의 정확한 재현에 초점을 맞추는 외력 기반 모형과는 달리 되먹임 기반 모형은 지형발달 과정에서 도출한 현상학적 규칙을 이용해 지형 역학을 분석한다. 되먹임 기반 모형은 성공적으로 사구형성 과정을 재현하지만, 규칙 설정의 융통성 수준에 대한 이해를 요구한다. 이 연구는 사구의 패턴을 재현하는 데 성공적이라고 평가되는 '모래판 모형(sand slab models)', 'Nishimori 모형', 'de Castro 모형'을 비교하여 알고리듬간 호환 가능성을 분석하였다. 주요 결과는 다음과 같다. 첫째, 모래이동 플럭스의 관점에서 모래판 모형과 de Castro 모형은 호환이 용이하지만 Nishimori 모형은 조정인자를 고려해야 한다. 둘째, 사면조정에 관한 Nishimori 모형의 알고리듬은 다른 모형이 채택하고 있는 안식각 기준을 손쉽게 이식할 수 있다. 셋째, 모래판 모형과 de Castro 모형이 채택하는 바람그늘 규칙은 사구 성장 및 발달에 필수 요인은 아닐 수 있으며, 사구열 수준의 상호작용에서 보다 중요한 역할을 할 것으로 보인다. 모래판 모형과 de Castro 모형, Nishimori 모형은 대체로 호환 가능한 구조를 갖추고 있다고 판단되나 호환 가능성의 수준을 판단하려면 보다 체계적인 검토가 필요하다.

  • PDF

Performance of laterally loaded piles considering soil and interface parameters

  • Fatahi, Behzad;Basack, Sudip;Ryan, Patrick;Zhou, Wan-Huan;Khabbaz, Hadi
    • Geomechanics and Engineering
    • /
    • 제7권5호
    • /
    • pp.495-524
    • /
    • 2014
  • To investigate the soil-pile interactive performance under lateral loads, a set of laboratory model tests was conducted on remoulded test bed of soft clay and medium dense sand. Then, a simplified boundary element analysis had been carried out assuming floating pile. In case of soft clay, it has been observed that lateral loads on piles can initiate the formation of a gap, soil heave and the tension crack in the vicinity of the soil surface and the interface, whereas in medium dense sand, a semi-elliptical depression zone can develop. Comparison of test and boundary element results indicates the accuracy of the solution developed. However, in the boundary element analysis, the possible shear stresses likely to be developed at the interface are ignored in order to simplify the existing complex equations. Moreover, it is unable to capture the influence of base restraint in case of a socketed pile. To bridge up this gap and to study the influence of the initial stress state and interface parameters, a field based case-study of laterally-loaded pile in layered soil with socketed tip is explored and modelled using the finite element method. The results of the model have been verified against known field measurements from a case-study. Parametric studies have been conducted to investigate the influence of the coefficient of lateral earth pressure and the interface strength reduction factor on the results of the model.

회분식 유동층 반응기에서 촉매함량 변화에 따른 WGS 촉매의 반응특성 (Reaction Characteristics of WGS Catalyst with Fraction of Catalyst in a Batch Type Fluidized Bed Reactor)

  • 류호정;현주수;김하나;황택성
    • 한국수소및신에너지학회논문집
    • /
    • 제22권4호
    • /
    • pp.465-473
    • /
    • 2011
  • To find the optimum mixing ratio of WGS catalyst with $CO_2$ absorbent for SEWGS process, water gas shift reaction tests were carried out in a fluidized bed reactor using commercial WGS catalyst and sand (as a substitute for $CO_2$ absorbent). WGS catalyst content, gas velocity, and steam/CO ratio were considered as experimental variables. CO conversion increased as the catalyst content increased during water gas shift reaction. Variations of the CO conversion with the catalyst content were small at low gas velocity. However, those variations increased at higher gas velocity. Within experimental range of this study, the optimum operating condition(steam/CO ratio=3, gas velocity = 0.03 m/s, catalyst content=10 wt.%) to get high CO conversion and $CO_2$ capture efficiency was confirmed. Moreover, long time water gas shift reaction tests up to 20 hours were carried out for two cases (catalyst content = 10 and 20 wt.%) and we could conclude that the WGS reactivity at those conditions was maintained up to 20 hours.

Manufacturing properties of γ-dicalcium silicate with synthetic method

  • Chen, Zheng-xin;Lee, Han-seung;Cho, Hyeong-Kyu
    • Journal of Ceramic Processing Research
    • /
    • 제20권spc1호
    • /
    • pp.109-112
    • /
    • 2019
  • γ-dicalcium silicate(γ-C2S) is known as a polymorphism of belite. Due to its high CO2 fixed capacity and the low CO2 emission production process, γ-C2S has attracted more and more attention of researchers. For the further development of application of γ-C2S in building construction industry. In this study, we aim to investigate the method for synthesizing high purity of γ-C2S. The influence of different raw materials and calcination temperatures on the purity of γ-C2S was also evaluated. Several Ca bearing materials were selected as the calcium source, the materials which' s main component is SiO2 were used as the silicon source. Raw materials were mixed and were calcined under different temperatures. The results reveal that the highest purity could be obtained using Ca(OH)2 and SiO2 powder as raw materials. And for the practical application, a relatively economic synthesis method using natural mineral materials- limestone and silica sand as raw materials was developed, by this method, the purity of the synthetic γ-C2S was 77.6%.

Comprehensive validation of silicon cross sections

  • Czakoj, Tomas;Kostal, Michal;Simon, Jan;Soltes, Jaroslav;Marecek, Martin;Capote, Roberto
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2717-2724
    • /
    • 2020
  • Silicon, especially silicon in the form of SiO2, is a major component of rocks. Final spent fuel storages, which are being designed, are located in suitable rock formations in the Earth's crust. Reduction of the uncertainty of silicon neutron scattering and capture is needed; improved silicon evaluations have been recently produced by the ORNL/IAEA collaboration within the INDEN project. This paper deals with the nuclear data validation of that evaluation performed at the LR-0 reactor by means of critical experiments and measurement of reaction rates. Large amounts of silicon were used both as pure crystalline silicon and SiO2 sand. The critical moderator level was measured for various core configurations. Reaction rates were determined in the largest core configuration. Simulations of the experimental setup were performed using the MCNP6.2 code. The obtained results show the improvement in silicon cross-sections in the INDEN evaluations compared to existing evaluations in major libraries. The new Thermal Scattering Law for SiO2 published in ENDF/B-VIII.0 additionally reduces the discrepancy between calculation and experiments. However, an unphysical peak is visible in the neutron spectrum in SiO2 obtained by calculation with the new Thermal Scattering Law.