• Title/Summary/Keyword: Sand bag line

Search Result 3, Processing Time 0.015 seconds

Effect of length of buoy line on loss of webfoot octopus pot (뜸줄 길이가 패류껍질어구의 유실에 미치는 영향)

  • LEE, Gun-Ho;CHO, Sam-Kwang;CHA, Bong-Jin;JUNG, Seong-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.4
    • /
    • pp.299-307
    • /
    • 2016
  • This study aims to investigate effects of the length of the buoy and sand bag line on the loss of webfoot octopus pot. A numerical modeling and simulation was carried out to analyze the process that the pot gear affected by wave using the mass spring model. Through the simulation, tensions of sand bag line under various condition were investigated by length of buoy and sand bag line. The drag force and coefficient k of an artificial shell used in the webfoot octopus pot was obtained from an experiment in a circular water channel, and the coefficient k was applied to the simulation. To verify the accuracy of the simulation model, a simple test was conducted into measuring a rope tension of a hanging shell under flow. Then, the test result was compared with the simulation. The lengths of the buoy line in the simulation were 1.12, 1.41, 1.80, 2.23, 2.69, and 3.17 times of water depth. The lengths of sand bag line were 10, 20, 30, and 40 meters, and conditions of water depth were 8, 15, 22 meters. 4 meter height and 8 second period of wave were applied to all simulations. As a results, the tension of the sand bag line was decreased as the buoy and sand bag line were increased. The minimum tension of the sand bag line was appeared in conditions that the length of the buoy line is twice of water depth and the sand bag line length is over 40 meters (except in case of depth 8 meters.).

Dynamic Behavior of Model Set Net in the Flow (모형 정치망의 흐름에 대한 거동)

  • Jung, Gi-Cheul;Kwon, Byeong-Guk;Le, Ju-Hee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.4
    • /
    • pp.275-284
    • /
    • 1997
  • This experiment was carried out to measure the sinking depth of each buoy, the change in the net shape of the net, and the tension of sand bag line according to the R (from bag net to the fish court) and L (from fish court to the bag net) current directions and their velocity by the model experiment. The model net was one-fiftieth of the real net, and its size was determined after considering the Tauti’s Similarity Law and the dimension of the experimental tank. 1. The changes of the net shape were as follows : In the current R, the end net of fish court moved 20mm down the lowerward tide and 10mm upper part. So the whole model net moved up at 0.2m/sec. The shape of the net showed an almost linear state from bag net to the fish court at 0.6m/sec. In the current L, the door net moved 242mm down the lowerward tide and 18mm upper part. So the whole model net moved up at 0.2m/sec. The net shape showed an almost linear state from the fish court to the bag net at 0.5m/sec. 2. The sinking depths of each buoy were as follows: In the current R, the head buoy started sinking at 0.2m/sec and sank 20mm, 99mm at 0.3m/sec and 0.6m/sec, respectively. The end buoy didn't sink from 0m/sec to 0.6m/sec but showed a slight quake. In the current L, the end buoy started sinking at 0.1m/sec, and sank 5mm and 108mm at 0.2m/sec and 0.6m/sec, respectively. The whole model net sank at 0.5m/sec except the head buoy. 3. The changes of the sand bag line tension were as follows: In the current R, the tension affected by the sand bag line of the head buoy showed 273.51g at 0.1m/sec increased to 1298.40g at 0.6m/sec. In the current L, the tension affected by the sand bag line of the end buoy on one side showed 137.08g at 0.1m/sec increased to 646.00g at 0.6m/sec. The changes in the sand bag line tension were concentrated on the sand bag line of the upperward tide with increasing velocity at the R and L current directions. However, no significant increase in tension was observed in the other sand bag lines.

  • PDF

Topographic Placement(Structure) and Macro Benthos Community in Winter for the Shellfish Farm of Namsung-ri, Goheung (고흥 남성리 패류양식장의 지형 구조와 저서생물 현장 조사)

  • Jo, Yeong-Hyun;Kim, Yun;Ryu, Cheong-Ro;Lee, Kyeong-Sig;Lee, In-Tae;Yoon, Han-Sam;Jun, Sue-Kyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.2
    • /
    • pp.175-183
    • /
    • 2010
  • To understand the variation of macro benthos community according to the installation of structure and topographic placement in the shellfish farm on tidal flat, the practical example of the tidal shellfish growing area at Namsung-ri Goheung was observed. The results of the research for the field observation were summarized as follows. (1) The ground gradient of the shellfish farm was very flat below about $1^{\circ}$. The shellfish farm ground took the shape of $\sqcup$ from the shoreline to the place of 150 m seawards, and the shape of $\sqcap$ from there to the low tide line. During ebb tide, the $\sqcup$ shape ground stored the sea water, and the $\sqcap$ shape ground was supposed to act as the effect factor to leak slowly or to prevent the outflow. (2) The oyster shell bag or the type of riprap wall as the boundary in the shellfish farm was classified into five types. The air exposure time and flooding time were 181 and 434 minutes, respectively. (3) In the numerical experiment, the deep-sea water wave coming in the study area had 0.5 m of maximum wave height to show the very stable conditions and the wave direction pattern of S-direction was dominant at Naro great ridge, and SE, SSW and S-direction were distributed strongly around the shellfish farm. (4) By the grain size analysis, the sediment around tidal flat consisted of gravel 0.00~5.81(average 1.70)%, sand 14.15~18.39(average 13.23)%, silt 27.59~47.15(average 30.84)% and clay 35.79~55.73(average 36.19)%, and the sediment type was divided into (g)M(lightly gravelly mud), sM(sandy mud) and gM(gravelly mud) by Folk's diagram. (5) The macro benthos community survey conducted in this site in January, 2010 showed that 1 species of Mollusca, 8 species of Polychaeta and 2 species of Crustacea appeared, and 11 species occupying over 1% of total abundance were dominant.