• Title/Summary/Keyword: Sand addition

Search Result 695, Processing Time 0.03 seconds

A Study of Tensile Strength on Compacted Sand-Bentonite Mixtures and Mixture's Crack Pattern with pH Levels (다짐된 모래-벤토나이트 혼합토의 인장강도와 산성도에 따른 혼합토의 균열패턴에 관한 연구)

  • Jung, Su-Jung;Kim, Chan-Kee;Kim, Tae-Hyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1090-1099
    • /
    • 2006
  • Tensile strength of soil is one of the important strength parameters in geotechnical engineering. The importance of the tensile strength of soil has been pointed out and given considerable attention in many highway pavements and earthfill dams. Recently, one of tensile strength problems, cracking failure of clay liners which is related to leakage of polluted water has been reported. Thus, the tensile strength of compacted sand-bentonite mixtures, which are used widely in the landfill construction site as clay liners was measured by Improved Unconfined Penetration (IUP) test. In addition, to find out the effects of contamination levels of water on the tensile strength and desiccation crack pattern, different pH levels of water were used for making specimens prepared with three different mixing contents of bentonite.

  • PDF

The Research of Beach Deformation after Construction of the Jetties

  • Park, Sang-Kil;Han, Chong-Soo;Roh, Tae-Young;Park, O-Young;Ahn, Ik-Seong;Lee, Ji-Hun
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.185-191
    • /
    • 2011
  • This research was described the prevention of coastal topographical change and sediment diffusive concentration incoming from small estuary after construction jetties. This structure is constructed to decrease sediment deposition incoming from the upstream river due to the urbanization and industrial development and to minimize effects on the coastal ecosystem. The physical modeling and numerical modeling for waves were conducted to analyze the configuration of Imrang sand beach deformation without and with construction of jetty. The specification of the installed jetty, which is able to control sedimentation concentration was decided based on the prediction of the Imrang beach area changes by space and time. As a result, the jetties constructed in the estuary retarded the rate of sand sediment, so that the effect area of sand sedimentation was obviously decreased. In addition, the measured field data indicated that the sediment deposition inside of dikes could be controlled and the right side area of jetties could be preserved without sediment deposition.

Removal Efficiency of Arsenic by Adsorbents having Different Type of Metal Oxides

  • Min, Sang-Yoon;Kim, Byeong-Kwon;Park, Sun-Ju;Chang, Yoon-Young;Yang, Jae-Kyu
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.134-139
    • /
    • 2009
  • In this study, oxidation of As (III) as well as removal of total arsenic by adsorbents coated with single oxides or multi-oxides (Fe (III), Mn (IV), Al (III)) was investigated. In addition, multi-functional properties of adsorbents coated with multi-oxides were evaluated. Finally, application of activated carbon impregnated with Fe or Mn-oxides on the treatment of As (III) or As (V) was studied. As (V) adsorption results with adsorbents containing Fe and Al shows that adsorbents containing Fe show a greater removal of As (V) at pH 4 than at pH 7. In contrast adsorbents containing Al shows a favorable removal of As (V) at pH 7 than at pH 4. In case of iron sand, it has a negligible adsorption capacity for As (V) although it contains 217.9 g-Fe/kg-adsorbent, Oxidation result shows that manganese coated sand (MCS) has the greatest As (III) oxidation capacity among all metal oxides at pH 4. Oxidation efficiency of As (III) by IMCS (iron and manganese coated sand) was less than that by MCS. However the total removed amount of arsenic by IMCS was greater than that by MCS.

The Weldability of the Dissimilar Magnesium Alloy Welded by Fiber Laser (파이버 레이저를 이용한 이종 마그네슘 합금의 용접성에 관한 연구)

  • Kim, Jong-Do;Kim, Young-Sik;Song, Mook-Keun;Lee, Jung-Han
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.63-68
    • /
    • 2013
  • Magnesium alloys have gained increased attention in recent years as the structural materials, because of their attractive properties such as good specific strength, excellent sound damping capability. However, to expand their applications, a reliable joining process is absolutely necessary. In this study, a CW fiber laser was used to investigate the lap weldability of sand casting and wrought magnesium alloys. The effect of defocused distance on lap weldability was examined, and it was found that spatters always generated at the around focused distance because of the high power density of the laser beam. Thus, defocused distance was required to obtain sound welds. In addition, the application of fillet welding was evaluated for minimizing the affect of sand casting magnesium alloy that have relatively poor weldability. As a result of this study, we could confirm good weldability without weld defects.

Investigation of the effect of grain size on liquefaction potential of sands

  • Sonmezer, Yetis Bulent;Akyuz, Abdussamed;Kayabali, Kamil
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.243-254
    • /
    • 2020
  • Due to the permanent damage to structures during earthquakes, soil liquefaction is an important issue in geotechnical earthquake engineering that needs to be investigated. Typical examples of soil liquefaction have been observed in many earthquakes, particularly in Alaska, Niigata (1964), San Fernando (1971), Loma Prieta (1989), Kobe (1995) and Izmit (1999) earthquakes. In this study, liquefaction behavior of uniform sands of different grain sizes was investigated by using the energy-based method. For this purpose, a total of 36 deformation-controlled tests were conducted on water-saturated samples in undrained conditions by using the cyclic simple shear test method and considering the relative density, effective stress and mean grain size parameters that affect the cumulative liquefaction energy. The results showed that as the mean grain size decreases, the liquefaction potential of the sand increases. In addition, with increasing effective stress and relative density, the resistance of sand against liquefaction decreases. Multiple regression analysis was performed on the test results and separate correlations were proposed for the samples with mean grain size of 0.11-0.26 mm and for the ones with 0.45-0.85 mm. The recommended relationships were compared to the ones existing in the literature and compatible results were obtained.

Fall-cone testing of different size/shape sands treated with a biopolymer

  • Cabalar, Ali Firat;Demir, Suleyman
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.441-448
    • /
    • 2020
  • This paper presents a study on the undrained shear strength (su) of various sands treated with a biopolymer by employing an extensive series of laboratory fall-cone penetration values covered a range of about 15 mm to 25 mm. In the tests, two sizes (0.15 mm-0.30 mm, and 1.0 mm-2.0 mm) and shapes (rounded, angular) of sand grains, Xanthan gum (XG), and distilled water were used. The XG biopolymer in 0.0%, 1.0%, 2.0%, and 3.0% by dry weight were mixed separately with four different sands, and water. The tests results obtained at the same water content revealed an increase in the su values at different levels with an increase in the XG content. Treating the sands with the XG biopolymer addition was concluded to have a greater efficacy on finer and more angular grains than coarser and more rounded grains in the samples. Overall, the present study indicates that different amount of the XG biopolymer has an important potential to be utilized for increasing the su values of samples with various size/shape of sand grains and water content.

Optimizing the mix design of pervious concrete based on properties and unit cost

  • Taheri, Bahram M.;Ramezanianpour, Amir M.
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.285-298
    • /
    • 2021
  • This study focused on experimental evaluation of mechanical properties of pervious concrete mixtures with the aim of achieving higher values of strength while considering the associated costs. The effectiveness of key parameters, including cement content, water to cement ratio (W/C), aggregate to cement ratio (A/C), and sand replacement was statistically analyzed using paired-samples t-test, Taguchi method and one-way ANOVA. Taguchi analysis determined that in general, the role of W/C was more significant in increasing strength, both compressive and flexural, than cement content and A/C. It was found that increase in replacing percent of coarse aggregate with sand could undermine specimens to percolate water, though one-way ANOVA analysis determined statistically significant increases in values of strength of mixtures. Cost analysis revealed that higher strengths did not necessarily correspond to higher costs; in addition, increasing the cement content was not an appropriate scenario to optimize both strength and cost. In order to obtain the optimal values, response surface method (RSM) was carried out. RSM optimization helped to find out that W/C of 0.40, A/C of 4.0, cement content of about 330 kg/m3 and replacing about 12% of coarse aggregate with sand could result in the best values for strength and cost while maintaining adequate permeability.

Maximum shear modulus of rigid-soft mixtures subjected to overconsolidation stress history

  • Boyoung Yoon;Hyunwook Choo
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.443-452
    • /
    • 2024
  • The use of sand-tire chip mixtures in construction industry is a sustainable and environmentally friendly approach that addresses both waste tire disposal and soil improvement needs. However, the addition of tire chip particles to natural soils decreases maximum shear modulus (Gmax), but increases compressibility, which can be potential drawbacks. This study examines the effect of overconsolidation stress history on the maximum shear modulus (Gmax) of rigid-soft mixtures with varying size ratios (SR) and tire chip contents (TC) by measuring the wave velocity through a 1-D compression test during loading and unloading. The results demonstrate that the Gmax of tested mixtures in the normally consolidated state increased with increasing SR and decreasing TC. However, the tested mixtures with a smaller SR exhibited a greater increase in Gmax during unloading because of the active pore-filling behavior of the smaller rubber particles and the consequent increased connectivity between sand particles. The SR-dependent impact of the overconsolidation stress history on Gmax was verified using the ratio between the swelling and compression indices. Most importantly, this study reveals that the excessive settlement and lower Gmax of rigid-soft mixtures can be overcome by introducing an overconsolidated state in sand-tire chip mixtures with low TC.

Usefulness of Balloon-type Hemostatic Device After Transarterial Chemoembolization (간동맥 화학색전술 후 풍선형 지혈기구의 유용성)

  • Kim, Seung-Gi
    • Journal of radiological science and technology
    • /
    • v.42 no.3
    • /
    • pp.181-186
    • /
    • 2019
  • Transarterial chemoembolization is one of the most representative procedures for puncture of the femoral artery. In addition, the same procedure is often repeatedly performed many times, and Hepatocellular carcinoma patients due to cancer is significantly lowered blood tests, regardless of platelet counts are not good enough to stop bleeding. More importantly, hepatocellular carcinoma has a high degree of complication and disease severity, which makes it less likely that the condition of the body will be relatively inferior to other patients. In order to prevent delayed hemorrhage of the femoral artery puncture site after the procedure, it is advised to absolutely stabilize the limb so that it does not bend the limb for 3 hours after climbing in the ward. Therefore, I have been complaining about inconvenience. In addition, in order to prevent delayed hemorrhage after hemostasis, balloon type hemostatic device was used instead of sand bag which was placed on hemostatic site. The results of this study were compared with the results of actual application. The use of a balloon-type hemostatic device to increase the effectiveness of continuous hemostasis and to minimize the inconvenience during the time of patient's absolute bed rest, rather than raising the sandbag to prevent primary delayed hemorrhage by various methods in transarterial chemoembolization. It can be used as a substitute for existing sand bags because it can alleviate pain, increase satisfaction, and can be used as a disposable one.

A Study on the Landforms Near of Mooseom Village, Naeseongcheon (내성천 무섬마을 인근의 하천 지형 특성에 대한 연구)

  • Kim, Jong Yeon;Shin, Won Jeong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.3
    • /
    • pp.1-17
    • /
    • 2019
  • Naeseongcheon is Korea's representative sand stream, and it is one of the regions where the dynamic changes of various river topography developed in the sand bed can be observed. Most of drainage area near of the river channel are formed with Daebo granite, and the granite weathering zone is developed at the surface of hill. Due to the massive input of sediment flux, braided channel reaches are found some of the area. However, the results of the study shows that the alluvial layer is very thin in some reaches. In addition, bedrock or weathered materials, including the Tors are exposed at the channel beds. On the other hand, during the flood, a considerable amount of sediment was introduced, causing the massive sediment to be close to 1m thick. In addition, despite the short distance, large changes in the particle size and sorting of the sediment were observed. Vegetation, on the other hand, has been shown to have a significant effect on the development of the overall channel bed topography, as reported in previous studies. In small floods or low water levels, vegetation's protection role of the surface is predominates, but in large flood conditions, herbaceous loss at the surface of the point bars, accelerating the erosion of surface.