Shin Yong Chul;Paik Nam Won;Yi Gwang Yong;Lee Byung Kyu;Lee Ji Tae
Journal of Environmental Health Sciences
/
v.28
no.1
/
pp.41-49
/
2002
Recently, pilot studies showed an evidence of reduction of airborne hexavalent chromium, Cr(VI), on PVC filter during air sampling and storage. However, the information on this in the field was limited. Thus, we studied the reduction behaviors of airborne Cr(VI) on PVC filters during sampling and storage at three field electroplating operations. Regression between sampling time and the reduction (ratio of Cr(VI) to total Cr concentrations) was not statistically significant (p>0.05). However, the reductions in samples collected for 240 ~ 340 minutes were significantly higher than those for 30 - 60 minutes. On the other hand, another experiment showed a good correlation (r=0.96) between sampling time and the reduction without an exceptional value. Storage temperature was not a factor affecting the reduction of Cr(VI) collected on PVC filter. The loss of Cr(VI) samples stored in alkali solution (2% NaOH/3% Na$_2$CO$_3$) was significantly lower than that stored in vial according to NIOSH method (p<0.05). Thus, dipping Cr(VI) samples into alkali solution was a storage method to minimize tile reduction.
Pak, Sae-Rom;Kim, Jun Seok;Park, Cheong-Sool;Park, Seung Hwan;Baek, Jun-Geol
Journal of Korean Institute of Industrial Engineers
/
v.40
no.4
/
pp.404-414
/
2014
Yield prediction is important to manage semiconductor quality. Many researches with machine learning algorithms such as SVM (support vector machine) are conducted to predict yield precisely. However, yield prediction using SVM is hard because extremely imbalanced and big data are generated by final test procedure in semiconductor manufacturing process. Using SVM algorithm with imbalanced data sometimes cause unnecessary support vectors from major class because of unselected support vectors from minor class. So, decision boundary at target class can be overwhelmed by effect of observations in major class. For this reason, we propose a under-sampling method with minor class based SVM (MCSVM) which overcomes the limitations of ordinary SVM algorithm. MCSVM constructs the model that fixes some of data from minor class as support vectors, and they can be good samples representing the nature of target class. Several experimental studies with using the data sets from UCI and real manufacturing process represent that our proposed method performs better than existing sampling methods.
Parrots have been threatened by global trade to meet their high demand as pets. Controlling parrot trade is essential because parrots play a vital role in the ecosystem. Accurate species identification is crucial for controlling parrot trade. Parrots have been traded as eggs due to their advantages of lower mortality rates and more accessible transport than live parrots. A molecular method is required to identify parrot eggs because it is difficult to perform identification using morphological features. In this study, DNAs were obtained from 43 unidentified parrot eggs using a non-destructive sampling method. Partial cytochrome b (CYTB) gene was then successfully amplified using polymerase chain reaction (PCR) and sequenced. Sequences newly obtained in the present study were compared to those available in the GenBank by database searching. In addition, phylogenetic analysis was conducted to identify species using available sequences in GenBank along with sequences reported in previous studies. Finally, the 43 parrot eggs were successfully identified as seven species belonging to two families and seven genera. This non-destructive sampling method for obtaining DNA and molecular identification might help control the trade of parrot eggs and prevent their illegal trade.
This paper reviews studies on information searching behavior in process control systems and discusses some implications learned from previous studies for use in human factors studies on nuclear power plants (NPPs) main control rooms (MCRs). Information searching behavior in NPPs depends on expectancy, value, salience, and effort. The first quantitative scanning model developed by Senders for instrument panel monitoring considered bandwidth (change rate) of instruments as a determining factor in scanning behavior. Senders' model was subsequently elaborated by other researchers to account for value in addition to bandwidth. There is also another type of model based on the operator's situation awareness (SA) which has been developed for NPP application. In these SA-based models, situation-event relations or rules on system dynamics are considered the most significant factor forming expectancy. From the review of previous studies it is recommended that, for NPP application, (1) a set of symptomatic information sources including both changed and unchanged symptoms should be considered along with bandwidth as determining factors governing information searching (or visual sampling) behavior; (2) both data-driven monitoring and knowledge-driven monitoring should be considered and balanced in a systematic way; (3) sound models describing mechanisms of cognitive activities during information searching tasks should be developed so as to bridge studies on information searching behavior and design improvement in HMI; (4) the attention-situation awareness (A-SA) modeling approach should be recognized as a promising approach to be examined further; and (5) information displays should be expected to have totally different characteristics in advanced control rooms. Hence much attention should be devoted to information searching behavior including human-machine interface (HMI) design and human cognitive processes.
With growing significance of psychological well-being in the worksite, the purpose of this analysis was to overview the empirical studies on worksite stress management and to identity the overall effect of worksite health promotion programs on stress management through meta-analysis. Literature retrieval was conducted on-line first in MEDLINE, EBSCOhost Academic Search Premier, and PSYCHINFO databases in public health, psychology, sociology, and human resource management areas. All studies written in English and published in the peer-reviewed journals during 1990 and 2002 were recruited. Key words used in literature retrieval were 'worksite,' 'intervention,' 'program,' 'work stress,' 'strain,' 'burnout,' 'management,' 'prevention,' 'education,' and 'health promotion.' A total of 18 worksite intervention studies with 48 effect sizes were analyzed and the results were as follows. Approximately 60% of the studies had quasi-experimental design and were conducted in manufacturing company and public sector. General psychological strains and burnout were frequently used measures of psychological stress. The lecturing and discussion typed intervention and the participatory problem-solving typed intervention were employed more than others in the studies. The average effect (r: pearson's simple correlation coefficient) weighted by sampling error was -0.14 (-0.32 to 0.05). In the conventional category of effects this is a small effect ranging from -0.59 to 0.05. Binomial effect size showed that success rates increased from 43% without intervention to 57% after an intervention. Sampling error explained 47.14% of the observed variance and its effectiveness on stress management were heterogeneous. In regression analysis with suspected moderating factors affecting the worksite interventions, research design was the only significant moderating factor. The studies with quasi-experimental design had greater effects than the studies with experimental design.
Jabrah, Rajai;Samawi, Hani M.;Vogel, Robert;Rochani, Haresh D.;Linder, Daniel F.;Klibert, Jeff
Communications for Statistical Applications and Methods
/
v.24
no.3
/
pp.241-254
/
2017
Drawing a sample can be costly or time consuming in some studies. However, it may be possible to rank the sampling units according to some baseline auxiliary covariates, which are easily obtainable, and/or cost efficient. Ranked set sampling (RSS) is a method to achieve this goal. In this paper, we propose a modified approach of the RSS method to allocate units into an experimental study that compares L groups. Computer simulation estimates the empirical nominal values and the empirical power values for the test procedure of comparing L different groups using modified RSS based on the regression approach in analysis of covariance (ANCOVA) models. A comparison to simple random sampling (SRS) is made to demonstrate efficiency. The results indicate that the required sample sizes for a given precision are smaller under RSS than under SRS. The modified RSS protocol was applied to an experimental study. The experimental study was designed to obtain a better understanding of the pathways by which positive experiences (i.e., goal completion) contribute to higher levels of happiness, well-being, and life satisfaction. The use of the RSS method resulted in a cost reduction associated with smaller sample size without losing the precision of the analysis.
Journal of the Korea Society of Computer and Information
/
v.27
no.6
/
pp.139-147
/
2022
This study tried to analyze the relationship among physical activity level, subjective health status, COVID-19 Fear. This study used the 2020 Community Health Survey that includes 229,269 survey data from adults over 19 years old. The complex sampling design was applied including weight, stratification, cluster variables. Through the SPSS statistics program with complex sampling frequency analysis, complex sampling Chi-square and complex sampling regression, this study found followings. First, the group with high level of physical activity showed higher level of subjective health status than the group with low level of physical activity. Second, the group with high level of physical activity showed lower level of COVID-19 fear than the group with low level of physical activity. Third, the group with high level of subjective health status showed lower level of COVID-19 fear than the group with low level of subjective health status. However, this study has the limitation that this study did not check whether participant is diagnosed with Covid-19 or not.
If the future can be predicted from network traffic data, which is a time series, it can achieve effects such as efficient resource allocation, prevention of malicious attacks, and energy saving. Many models based on statistical and deep learning techniques have been proposed, and most of these studies have focused on improving model structures and learning algorithms. Another approach to improving the prediction performance of the model is to obtain a good-quality data. With the aim of obtaining a good-quality data, this paper applies a dense sampling technique that augments time series data to the application of network traffic prediction and analyzes the performance improvement. As a dataset, UNSW-NB15, which is widely used for network traffic analysis, is used. Performance is analyzed using RMSE, MAE, and MAPE. To increase the objectivity of performance measurement, experiment is performed independently 10 times and the performance of existing sparse sampling and dense sampling is compared as a box plot. As a result of comparing the performance by changing the window size and the horizon factor, dense sampling consistently showed a better performance.
Orientation data of discontinuities are of paramount importance for rock slope stability studies because they control the possibility of unstable conditions or excessive deformation. Most orientation data are collected by using linear sampling techniques, such as borehole fracture mapping and the detailed scanline method (outcrop mapping). However, these data, acquired by the above linear sampling techniques, are subjected to bias, owing to the orientation of the sampling line. Even though a weighting factor is applied to orientation data in order to reduce this bias, the bias will not be significantly reduced when certain sampling orientations are involved. That is, if the linear sampling orientation nearly parallels the discontinuity orientation, most discontinuities orientation data which are parallel to sampling line will be excluded from the survey result. This phenomenon can cause serious misinterpretation of discontinuity orientation data because critical information is omitted. In the case study, orientation data collected by using the borehole fracture mapping method (vertical scanline) were compared to those based on orientation data from the detailed scanline method (horizontal scanline). Differences in results for the two procedures revealed a concern that a representative orientation of discontinuities was not accomplished. Equal-area, polar stereo nets were used to determine the distribution of dip angles and to compare the data distribution fur the borehole method versus those for the scanline method.
A class imbalance problem arises when one class outnumbers the other class by a large proportion in binary data. Studies such as transforming the learning data have been conducted to solve this imbalance problem. In this study, we compared resampling methods among methods to deal with an imbalance in the classification problem. We sought to find a way to more effectively detect the minority class in the data. Through simulation, a total of 20 methods of over-sampling, under-sampling, and combined method of over- and under-sampling were compared. The logistic regression, support vector machine, and random forest models, which are commonly used in classification problems, were used as classifiers. The simulation results showed that the random under sampling (RUS) method had the highest sensitivity with an accuracy over 0.5. The next most sensitive method was an over-sampling adaptive synthetic sampling approach. This revealed that the RUS method was suitable for finding minority class values. The results of applying to some real data sets were similar to those of the simulation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.