• Title/Summary/Keyword: Sampling and analysis error

Search Result 197, Processing Time 0.029 seconds

Hyperspectral Image Classification via Joint Sparse representation of Multi-layer Superpixles

  • Sima, Haifeng;Mi, Aizhong;Han, Xue;Du, Shouheng;Wang, Zhiheng;Wang, Jianfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5015-5038
    • /
    • 2018
  • In this paper, a novel spectral-spatial joint sparse representation algorithm for hyperspectral image classification is proposed based on multi-layer superpixels in various scales. Superpixels of various scales can provide complete yet redundant correlated information of the class attribute for test pixels. Therefore, we design a joint sparse model for a test pixel by sampling similar pixels from its corresponding superpixels combinations. Firstly, multi-layer superpixels are extracted on the false color image of the HSI data by principal components analysis model. Secondly, a group of discriminative sampling pixels are exploited as reconstruction matrix of test pixel which can be jointly represented by the structured dictionary and recovered sparse coefficients. Thirdly, the orthogonal matching pursuit strategy is employed for estimating sparse vector for the test pixel. In each iteration, the approximation can be computed from the dictionary and corresponding sparse vector. Finally, the class label of test pixel can be directly determined with minimum reconstruction error between the reconstruction matrix and its approximation. The advantages of this algorithm lie in the development of complete neighborhood and homogeneous pixels to share a common sparsity pattern, and it is able to achieve more flexible joint sparse coding of spectral-spatial information. Experimental results on three real hyperspectral datasets show that the proposed joint sparse model can achieve better performance than a series of excellent sparse classification methods and superpixels-based classification methods.

A Study on Sampling Techniques to Assure the Representativeness of Short-term Equivalent Noise Level (단기간 소음도의 대표성 확보를 위한 소음도 추출기법 연구)

  • Ryu, Hun Jae;Ko, Joon Hee;Chang, Seo Il;Lee, Byung Chan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1213-1219
    • /
    • 2012
  • The purpose of this study is to present a guideline to design a short-term manual measurement of environmental noise level, which is more economical and flexible, but less representative than long-term automatic measurement. The proposed guideline can provide the number of measurement times and the length of measurement term required to secure the extent of the representativeness. The data was collected at 4 sites located in Seoul and at 4 sites located outside of Seoul. The probabilities for five-minute equivalent noise levels, Leq, 5min, to stay in an error range from the quarterly representative noise level were used to evaluate sampling techniques. The probability analysis of the daytime period showed that the noise levels measured between 10 am and 2 pm and between 9 pm and 10 pm have the probabilities higher than 60 %. On the other hand, even for the same length of total measurement time, increasing the number of random samplings results in higher probabilities than increasing the length of measurement term.

Uncertainty Assessment of a Towed Underwater Stereoscopic PIV System (예인수조용 스테레오스코픽 입자영상유속계 시스템의 불확실성 해석)

  • Seo, Jeonghwa;Seol, Dong Myung;Han, Bum Woo;Yoo, Geuksang;Lim, Tae Gu;Park, Seong Taek;Rhee, Shin Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.311-320
    • /
    • 2014
  • Test uncertainty of a towed underwater Stereoscopic Particle Image Velocimetry (SPIV) system was assessed in a towing tank. To estimate the systematic error and random error of mean velocity and turbulence properties measurement, velocity field of uniform flow was measured. Total uncertainty of the axial component of mean velocity was 1.45% of the uniform flow speed and total uncertainty of turbulence properties was 3.03%. Besides, variation of particle displacement was applied to identify the change of error distribution. In results for variation of particle displacement, the error rapidly increases with particle movement under one pixel. In addition, a nominal wake of a model ship was measured and compared with existing experimental data by five-hole Pitot tubes, Pitot-static tube, and hot wire anemometer. For mean velocity, small local vortex was identified with high spatial resolution of SPIV, but has serious disagreement in local maxima of turbulence properties due to limited sampling rate.

Analysis of Comparison Test and Measurement Error Factor for I - V Performance of Photovoltaic Module (PV모듈 발전성능 비교시험과 계측편차 요인 분석)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.70-75
    • /
    • 2009
  • In this experiment, we did sampling 6 kinds of photovoltaic modules and analyzed the discrepancy of measurement results between l laboratory and 4 PV makers to have performance repeatability at Standard Test Condition(STC) condition. From the KIER's results, Korea's standard test laboratory, other laboratory showed -10% measurement variation. The causes came from correction of reference cell, test condition and the state of skill. Form the comparison test, we analyzed the problems. But three PV maker reduced measurement variation, other one PV maker and one test laboratory didn't improve the problems of correction of reference cell, test condition and the state of skill. Also, High Efficiency Module had a big discrepancy of -10.0$\sim$-6.2% among 3 laboratories which have a less than 10msec light pulse duration time. This made low spectrum response speed so the Fill Factor decreased maximum output power under 10msec light pulse duration time

Construction of a Ginsenoside Content-predicting Model based on Hyperspectral Imaging

  • Ning, Xiao Feng;Gong, Yuan Juan;Chen, Yong Liang;Li, Hongbo
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.369-378
    • /
    • 2018
  • Purpose: The aim of this study was to construct a saponin content-predicting model using shortwave infrared imaging spectroscopy. Methods: The experiment used a shortwave imaging spectrometer and ENVI spectral acquisition software sampling a spectrum of 910 nm-2500 nm. The corresponding preprocessing and mathematical modeling analysis was performed by Unscrambler 9.7 software to establish a ginsenoside nondestructive spectral testing prediction model. Results: The optimal preprocessing method was determined to be a standard normal variable transformation combined with the second-order differential method. The coefficient of determination, $R^2$, of the mathematical model established by the partial least squares method was found to be 0.9999, while the root mean squared error of prediction, RMSEP, was found to be 0.0043, and root mean squared error of calibration, RMSEC, was 0.0041. The residuals of the majority of the samples used for the prediction were between ${\pm}1$. Conclusion: The experiment showed that the predicted model featured a high correlation with real values and a good prediction result, such that this technique can be appropriately applied for the nondestructive testing of ginseng quality.

An estimation and radioactivity measurement for radiocarbon(14C) in the Korean nuclear power plants

  • Seo Ra Yang;Jin Hong Lee;Jae Hwan Yang;Geun-Il Park
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.2906-2915
    • /
    • 2024
  • Radiocarbon (14C), with a radioactive half-life of approximately 5730 years, poses a long-term environmental contamination risk when released into the atmosphere. The quantification analysis of its release estimates plant-specific generation rates based on factors such as plant power, core neutron flux distribution, and the volume of water exposed to this flux. Utilizing the improved estimation method, the 14C production rate for several Korean Pressurized Water Reactors (PWRs) was calculated. Also, improvements in measurement methods through sampling have also been made. These enhancements include the verification of the absorption method versus the mixing method. The results of this study indicate that plant-specific 14C production rates range from 0.213 to 0.317 TBq/yr, which are comparable to the global range observed in PWRs. Furthermore, the study evaluated a quenching correction curve for a liquid scintillation counter using two quenching correction methods: the external standard method and the internal standard method. The accuracy of these methods with 72 samples was validated with an average relative error within ±2.5%. The relative error of the mixing method, when compared to the direct absorption method, was found to be within ±20%. This finding underscores the validity of the improved measurement technique.

Forecasting Daily Demand of Domestic City Gas with Selective Sampling (선별적 샘플링을 이용한 국내 도시가스 일별 수요예측 절차 개발)

  • Lee, Geun-Cheol;Han, Jung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6860-6868
    • /
    • 2015
  • In this study, we consider a problem of forecasting daily city gas demand of Korea. Forecasting daily gas demand is a daily routine for gas provider, and gas demand needs to be forecasted accurately in order to guarantee secure gas supply. In this study, we analyze the time series of city gas demand in several ways. Data analysis shows that primary factors affecting the city gas demand include the demand of previous day, temperature, day of week, and so on. Incorporating these factors, we developed a multiple linear regression model. Also, we devised a sampling procedure that selectively collects the past data considering the characteristics of the city gas demand. Test results on real data exhibit that the MAPE (Mean Absolute Percentage Error) obtained by the proposed method is about 2.22%, which amounts to 7% of the relative improvement ratio when compared with the existing method in the literature.

Estimation of Chest Compression Depth during Cardiopulmonary Resuscitation by using Single Frequency Analysis (단일주파수분석을 이용한 심폐소생술 흉부압박깊이 추정)

  • U, One Sang;Kang, Seong Min;Choi, Seong Wook
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.211-217
    • /
    • 2017
  • During the emergency situation such as cardiac arrest, cardiopulmonary resuscitation(CPR) is the most important treatment to maintain patient's blood circulation. Since the quality of CPR can not be easily measured or evaluated by the eye, an assistive device with an accelerometer can help to assess the pressure depth of CPR. In this study, we propose a single frequency analysis method to reduce the error of the accelerometer by extracting only one frequency component from the Fourier transform process. To verify the effectiveness of the single frequency analysis, acceleration data at CPR conditions were measured at a sampling rate of 50 / sec using a wristband equipped with an acceleration sensor. Then, We compared the existing distance estimation method and the single frequency analysis method using the measured data. The amplitude value proportional to the compression depth was obtained by applying the single frequency analysis method.

Power System Fault Monitoring System using Wavelelet Transform and GPS for Accurate Time Synchronization (웨이블릿 변환과 GPS 정밀시각동기를 이용한 전력계통 고장점 모니터링 시스템에 관한 연구)

  • Kim, Gi-Taek;Kim, Hyuck-Soo;Choi, Jung-Yong
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.105-110
    • /
    • 2001
  • A continuous and reliable electrical energy supply is the objective of any power system operation. A transmission line is the part of the power system where faults are most likely to happen. This paler describes the use of wavelet transform for analyzing power system fault transients in order to determine the fault location. Synchronized sampling was made possible by precise time receivers based on GPS time reference, and the sampled data were analyzed using wavelet transform. This paper describes a fault location monitoring system and fault locating algorithm with GPS, DSP processor, and data acquisition board, and presents some experimental results and error analysis.

  • PDF

A Study on the Power Monitoring System using GPS for Accurate Time Synchronization (GPS 정밀시각동기를 이용한 전력계통 모니터링 시스템에 관한 연구)

  • 김혁수;전성준;김기택
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.285-285
    • /
    • 2000
  • A continuous and reliable electrical energy supply is the objective of any power system operation. A transmission line is the part of the power system where faults are most likely to happen. This paper describes the use of wavelet transform for analyzing power system fault transients in order to determine the fault location. Synchronized sampling was made possible by precise time receivers based on GPS time reference, and the sampled data were analyzed using wavelet transform. This paper describes a fault location monitoring system and fault locating algorithm with GPS, DSP processor, and data acquisition board, and presents some experimental results and error analysis.

  • PDF