• Title/Summary/Keyword: Sampling Rate

Search Result 1,652, Processing Time 0.022 seconds

Analysis of Image of Meister High School Students by Industrial HR Managers (마이스터고 학생에 대한 산업체 HR 담당자의 이미지 분석)

  • Jo, Han-Jin;Wi, Seon-Bok;Lee, Dong-Ho;Kim, Min-woong;Kim, Tae-Hoon
    • Journal of vocational education research
    • /
    • v.36 no.2
    • /
    • pp.68-94
    • /
    • 2017
  • The purpose of this study is to provide basic data for the development of school education and employment policy by analyzing the differences between image of meister high school students anticipated by industrial HR managers and image actually perceived. For this, semantic differential method developed by Osgood (1957) was selected as the study tool. To find out images of meister high school students, validity of 50 adjectives suggested by Osgood and 21 additional adjectives used in previous studies was reviewed by 10 experts. Final 20 adjectives were selected by excluding adjectives that fail to satisfy validity of contents. Proportional sampling in metropolitan and non-metropolitan areas was done to select 350 final survey samples. A total of 600 surveys were distributed and 230 were returned. Return rate was 38.3%. The results of this study are as follows. First, image of meister high school students anticipated by industrial HR managers showed average score of 2.49, which indicates a positive image. In addition, factor analysis was performed to classify adjectives into groups, and they were divided into three factors including external factor, way of thinking factor, and internal (personality) factor. Second, image of meister high school students currently perceived by industrial HR managers showed average score of 3.24, which indicates a positive image. Third, image of meister high school students currently perceived by industrial HR managers was not as positive as image they anticipate.

A Study on the legal system to trace the bycaught whale and dolphin meat in the market (혼획 고래 유통 이력 추적을 위한 제도 개선 방안 연구)

  • Sohn, Hawsun;Hong, Boga;Kim, Min Ju;Kim, Suyeon
    • Ocean policy research
    • /
    • v.33 no.2
    • /
    • pp.183-204
    • /
    • 2018
  • Whaling has been banned in Republic of Korea after the declaration of the moratorium on the commercial whaling by the International Whaling Commission (IWC) since 1986. Korean government followed the moratorium immediately. However whale meat market has been kept by the bycaught whales and dolphins. So Korean government established a rule to control and trace whale meat in the market in 2011. The rule has some loopholes to allow illegally taken whale meat smuggle into the market. This study investigates the flaws in the current rule and recommend the way to overcome that defects. The first step is to prevent the entry of the illegal whale meat into the market. Minor change of the current law would be a solution. The next measure is to increase the sampling rate of the whale DNA that allowed to distribute in the market. The DNA database would be a powerful tools to identify illegal whale meat which is existing in the market. Korean government is operating three kind of food traceability systems. However, because of the legal limitations and the opposition of the non-governmental animal rights organizations, it is difficult to include whale meat to the existing systems. So the last step is to establish a new Traceability System with a state-of-the-art IT technology like as blockchain. The three measures mentioned above would increase the transparency in the whale meat market and prevent the entry of the illegal products.

12-bit SAR A/D Converter with 6MSB sharing (상위 6비트를 공유하는 12 비트 SAR A/D 변환기)

  • Lee, Ho-Yong;Yoon, Kwang-Sub
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1012-1018
    • /
    • 2018
  • In this paper, CMOS SAR (Successive Approximation Register) A/D converter with 1.8V supply voltage is designed for IoT sensor processing. This paper proposes design of a 12-bit SAR A/D converter with two A / D converters in parallel to improve the sampling rate. A/D converter1 of the two A/D converters determines all the 12-bit bits, and another A/D converter2 uses the upper six bits of the other A/D converters to minimize power consumption and switching energy. Since the second A/D converter2 does not determine the upper 6 bits, the control circuits and SAR Logic are not needed and the area is minimized. In addition, the switching energy increases as the large capacitor capacity and the large voltage change in the C-DAC, and the second A/D converter does not determine the upper 6 bits, thereby reducing the switching energy. It is also possible to reduce the process variation in the C-DAC by proposed structure by the split capacitor capacity in the C-DAC equals the unit capacitor capacity. The proposed SAR A/D converter was designed using 0.18um CMOS process, and the supply voltage of 1.8V, the conversion speed of 10MS/s, and the Effective Number of Bit (ENOB) of 10.2 bits were measured. The area of core block is $600{\times}900um^2$, the total power consumption is $79.58{\mu}W$, and the FOM (Figure of Merit) is 6.716fJ / step.

A 10-bit 20-MS/s Asynchronous SAR ADC using Self-calibrating CDAC (자체 보정 CDAC를 이용한 10비트 20MS/s 비동기 축차근사형 ADC)

  • Youn, Eun-ji;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.35-43
    • /
    • 2019
  • A capacitor self-calibration is proposed to improve the linearity of the capacitor digital-to-analog converter (CDAC) for an asynchronous successive approximation register (SAR) analog-to-digital converter (ADC) with 10-bit resolution. The proposed capacitor self-calibration is performed so that the value of each capacitor of the upper 5 bits of the 10-bit CDAC is equal to the sum of the values of the lower capacitors. According to the behavioral simulation results, the proposed capacitor self-calibration improves the performances of differential nonlinearity (DNL) and integral nonlinearity (INL) from -0.810/+0.194 LSBs and -0.832/+0.832 LSBs to -0.235/+0.178 LSBs and -0.227/+0.227 LSBs, respectively, when the maximum capacitor mismatch of the CDAC is 4%. The proposed 10-bit 20-MS/s asynchronous SAR ADC is implemented using a 110-nm CMOS process with supply of 1.2 V. The area and power consumption of the proposed asynchronous SAR ADC are $0.205mm^2$ and 1.25 mW, respectively. The proposed asynchronous SAR ADC with the capacitor calibration has a effective number of bits (ENOBs) of 9.194 bits at a sampling rate of 20 MS/s about a $2.4-V_{PP}$ differential analog input with a frequency of 96.13 kHz.

A vision-based system for long-distance remote monitoring of dynamic displacement: experimental verification on a supertall structure

  • Ni, Yi-Qing;Wang, You-Wu;Liao, Wei-Yang;Chen, Wei-Huan
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.769-781
    • /
    • 2019
  • Dynamic displacement response of civil structures is an important index for in-construction and in-service structural condition assessment. However, accurately measuring the displacement of large-scale civil structures such as high-rise buildings still remains as a challenging task. In order to cope with this problem, a vision-based system with the use of industrial digital camera and image processing has been developed for long-distance, remote, and real-time monitoring of dynamic displacement of supertall structures. Instead of acquiring image signals, the proposed system traces only the coordinates of the target points, therefore enabling real-time monitoring and display of displacement responses in a relatively high sampling rate. This study addresses the in-situ experimental verification of the developed vision-based system on the Canton Tower of 600 m high. To facilitate the verification, a GPS system is used to calibrate/verify the structural displacement responses measured by the vision-based system. Meanwhile, an accelerometer deployed in the vicinity of the target point also provides frequency-domain information for comparison. Special attention has been given on understanding the influence of the surrounding light on the monitoring results. For this purpose, the experimental tests are conducted in daytime and nighttime through placing the vision-based system outside the tower (in a brilliant environment) and inside the tower (in a dark environment), respectively. The results indicate that the displacement response time histories monitored by the vision-based system not only match well with those acquired by the GPS receiver, but also have higher fidelity and are less noise-corrupted. In addition, the low-order modal frequencies of the building identified with use of the data obtained from the vision-based system are all in good agreement with those obtained from the accelerometer, the GPS receiver and an elaborate finite element model. Especially, the vision-based system placed at the bottom of the enclosed elevator shaft offers better monitoring data compared with the system placed outside the tower. Based on a wavelet filtering technique, the displacement response time histories obtained by the vision-based system are easily decomposed into two parts: a quasi-static ingredient primarily resulting from temperature variation and a dynamic component mainly caused by fluctuating wind load.

A research on the emotion classification and precision improvement of EEG(Electroencephalogram) data using machine learning algorithm (기계학습 알고리즘에 기반한 뇌파 데이터의 감정분류 및 정확도 향상에 관한 연구)

  • Lee, Hyunju;Shin, Dongil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.20 no.5
    • /
    • pp.27-36
    • /
    • 2019
  • In this study, experiments on the improvement of the emotion classification, analysis and accuracy of EEG data were proceeded, which applied DEAP (a Database for Emotion Analysis using Physiological signals) dataset. In the experiment, total 32 of EEG channel data measured from 32 of subjects were applied. In pre-processing step, 256Hz sampling tasks of the EEG data were conducted, each wave range of the frequency (Hz); Theta, Slow-alpha, Alpha, Beta and Gamma were then extracted by using Finite Impulse Response Filter. After the extracted data were classified through Time-frequency transform, the data were purified through Independent Component Analysis to delete artifacts. The purified data were converted into CSV file format in order to conduct experiments of Machine learning algorithm and Arousal-Valence plane was used in the criteria of the emotion classification. The emotions were categorized into three-sections; 'Positive', 'Negative' and 'Neutral' meaning the tranquil (neutral) emotional condition. Data of 'Neutral' condition were classified by using Cz(Central zero) channel configured as Reference channel. To enhance the accuracy ratio, the experiment was performed by applying the attributes selected by ASC(Attribute Selected Classifier). In "Arousal" sector, the accuracy of this study's experiments was higher at "32.48%" than Koelstra's results. And the result of ASC showed higher accuracy at "8.13%" compare to the Liu's results in "Valence". In the experiment of Random Forest Classifier adapting ASC to improve accuracy, the higher accuracy rate at "2.68%" was confirmed than Total mean as the criterion compare to the existing researches.

Use of Unmanned Aerial Vehicle Imagery and Deep Learning UNet to Classification Upland Crop in Small Scale Agricultural Land (무인항공기와 딥러닝(UNet)을 이용한 소규모 농지의 밭작물 분류)

  • Choi, Seokkeun;Lee, Soungki;Kang, Yeonbin;Choi, Do Yeon;Choi, Juweon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.671-679
    • /
    • 2020
  • In order to increase the food self-sufficiency rate, monitoring and analysis of crop conditions in the cultivated area is important, and the existing measurement methods in which agricultural personnel perform measurement and sampling analysis in the field are time-consuming and labor-intensive for this reason inefficient. In order to overcome this limitation, it is necessary to develop an efficient method for monitoring crop information in a small area where many exist. In this study, RGB images acquired from unmanned aerial vehicles and vegetation index calculated using RGB image were applied as deep learning input data to classify complex upland crops in small farmland. As a result of each input data classification, the classification using RGB images showed an overall accuracy of 80.23% and a Kappa coefficient of 0.65, In the case of using the RGB image and vegetation index, the additional data of 3 vegetation indices (ExG, ExR, VDVI) were total accuracy 89.51%, Kappa coefficient was 0.80, and 6 vegetation indices (ExG, ExR, VDVI, RGRI, NRGDI, ExGR) showed 90.35% and Kappa coefficient of 0.82. As a result, the accuracy of the data to which the vegetation index was added was relatively high compared to the method using only RGB images, and the data to which the vegetation index was added showed a significant improvement in accuracy in classifying complex crops.

A Study on the Background of Start-Ups and the Factors of Entrepreneurship in Young Job Seekers' Willingness to Start a Business: Verification of the Mediating Effect of Perception of Businessmen (청년구직자의 창업 배경과 기업가정신이 창업 의지에 미치는 요인에 관한 연구: 사업가에 대한 인식의 매개 효과 검증)

  • Oh, Hee Shun;Ha, Kyu Soo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.3
    • /
    • pp.87-103
    • /
    • 2021
  • The government is trying to create jobs by providing 160 billion won in 2021 to revitalize youth start-ups, but the number of youth unemployment and potential unemployment is hitting a record high of 1.2 million due to the shock of employment due to COVID-19. Although start-ups are encouraged as an alternative to revitalizing jobs, the success rate of young start-ups is low due to lack of start-up funds and experience. The purpose of this study is to understand the need to diversify start-up education and career education by understanding start-up policies through one-time funding and short-term education. The results of the study on the factors affecting the willingness to start a business were as follows, by sampling 344 students from specialized high schools preparing for employment and 344 young people in their 20s who are seeking jobs. First, among the entrepreneurship subvariables, innovation, autonomy of job value, and desire for economic achievement are significant, and the older the person surveyed, the more positive the perception of the entrepreneur was. Second, as you get older, your will to start a business decreases, and your experience in successful start-up models and start-up education has an impact on your will to start a business. Third, perception of entrepreneurs is a partial medium effect, which indirectly influences the willingness to start a business and directly or indirectly influences the willingness to start a business through the autonomy of job values, the desire to achieve economic and entrepreneurship.

A TBM data-based ground prediction using deep neural network (심층 신경망을 이용한 TBM 데이터 기반의 굴착 지반 예측 연구)

  • Kim, Tae-Hwan;Kwak, No-Sang;Kim, Taek Kon;Jung, Sabum;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.13-24
    • /
    • 2021
  • Tunnel boring machine (TBM) is widely used for tunnel excavation in hard rock and soft ground. In the perspective of TBM-based tunneling, one of the main challenges is to drive the machine optimally according to varying geological conditions, which could significantly lead to saving highly expensive costs by reducing the total operation time. Generally, drilling investigations are conducted to survey the geological ground before the TBM tunneling. However, it is difficult to provide the precise ground information over the whole tunnel path to operators because it acquires insufficient samples around the path sparsely and irregularly. To overcome this issue, in this study, we proposed a geological type classification system using the TBM operating data recorded in a 5 s sampling rate. We first categorized the various geological conditions (here, we limit to granite) as three geological types (i.e., rock, soil, and mixed type). Then, we applied the preprocessing methods including outlier rejection, normalization, and extracting input features, etc. We adopted a deep neural network (DNN), which has 6 hidden layers, to classify the geological types based on TBM operating data. We evaluated the classification system using the 10-fold cross-validation. Average classification accuracy presents the 75.4% (here, the total number of data were 388,639 samples). Our experimental results still need to improve accuracy but show that geology information classification technique based on TBM operating data could be utilized in the real environment to complement the sparse ground information.

Building a Korean conversational speech database in the emergency medical domain (응급의료 영역 한국어 음성대화 데이터베이스 구축)

  • Kim, Sunhee;Lee, Jooyoung;Choi, Seo Gyeong;Ji, Seunghun;Kang, Jeemin;Kim, Jongin;Kim, Dohee;Kim, Boryong;Cho, Eungi;Kim, Hojeong;Jang, Jeongmin;Kim, Jun Hyung;Ku, Bon Hyeok;Park, Hyung-Min;Chung, Minhwa
    • Phonetics and Speech Sciences
    • /
    • v.12 no.4
    • /
    • pp.81-90
    • /
    • 2020
  • This paper describes a method of building Korean conversational speech data in the emergency medical domain and proposes an annotation method for the collected data in order to improve speech recognition performance. To suggest future research directions, baseline speech recognition experiments were conducted by using partial data that were collected and annotated. All voices were recorded at 16-bit resolution at 16 kHz sampling rate. A total of 166 conversations were collected, amounting to 8 hours and 35 minutes. Various information was manually transcribed such as orthography, pronunciation, dialect, noise, and medical information using Praat. Baseline speech recognition experiments were used to depict problems related to speech recognition in the emergency medical domain. The Korean conversational speech data presented in this paper are first-stage data in the emergency medical domain and are expected to be used as training data for developing conversational systems for emergency medical applications.