그래프 노드상에서 발생하는 그래프 신호의 일부를 선택해서 만든 샘플링 신호로부터 원신호를 복원하기 위해, 복원오차를 최소화하기 위한 최적의 샘플링 집합을 선택하는 알고리즘에 관해 연구한다. 복잡도 개선을 위해 복원오차를 직접적으로 최소화하는 대신에, 복원오차의 상한값을 비용함수로 사용하고, QR분해 적용을 통해 발생하는 상삼각행렬의 대각선상에 위치하는 값으로 샘플링을 결정할 수 있게 하는, 저 복잡도를 갖는 반복적 탐욕알고리즘을 제안한다. 기존의 샘플링 선택 방법과 비교하여, 제안 알고리즘이 복원 성능 저하를 평균 5%미만으로 유지하면서, 약 3.5배 빠른 실행시간을 보임을 다양한 그래프 상황에서 실험을 통해 확인한다.
Kim, Jibum;Kim, Inbin;Kwon, Namgu;Park, Heemin;Chae, Jinseok
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권2호
/
pp.600-619
/
2015
We propose a cost-efficient hybrid algorithm for online location updates that efficiently combines feature point detection with the online trajectory-based sampling algorithm. Our algorithm is designed to minimize the average trajectory error with the minimal number of sample points. The algorithm is composed of 3 steps. First, we choose corner points from the map as sample points because they will most likely cause fewer trajectory errors. By employing the online trajectory sampling algorithm as the second step, our algorithm detects several missing and important sample points to prevent unwanted trajectory errors. The final step improves cost efficiency by eliminating redundant sample points on straight paths. We evaluate the proposed algorithm with real GPS trajectory data for various bus routes and compare our algorithm with the existing one. Simulation results show that our algorithm decreases the average trajectory error 28% compared to the existing one. In terms of cost efficiency, simulation results show that our algorithm is 29% more cost efficient than the existing one with real GPS trajectory data.
In this paper, we propose a multiplay Thompson sampling algorithm in multipath communication system. Multipath communication system has advantages on communication capacity, robustness, survivability, and so on. It is important to select appropriate network path according to the status of individual path. However, it is hard to obtain the information of path quality simultaneously. To solve this issue, we propose Thompson sampling which is popular in machine learning area. We find some issues when the algorithm is applied directly in the proposal system and suggested some modifications. Through simulation, we verified the proposed algorithm can utilize the entire network paths. In summary, our proposed algorithm can be applied as a path allocation in multipath-based communications system.
Communications for Statistical Applications and Methods
/
제14권1호
/
pp.255-266
/
2007
A Bayesian estimation of the four-parameter gamma distribution is considered under the noninformative prior. The Bayesian estimators are obtained by the Gibbs sampling. The generation of the shape/power parameter and the power parameter in the Gibbs sampler is implemented using the adaptive rejection sampling algorithm of Gilks and Wild (1992). Also, the location parameter is generated using the adaptive rejection Metropolis sampling algorithm of Gilks, Best and Tan (1995). Finally, the simulation result is presented.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권10호
/
pp.4940-4957
/
2019
Compared with the localization methods in the static sensor networks, node localization in dynamic sensor networks is more complicated due to the mobility of the nodes. Dynamic Sampling Localization Algorithm Based on Virtual Anchor (DSLA) is proposed in this paper to localize the unknown nodes in dynamic sensor networks. Firstly, DSLA algorithm predicts the speed and movement direction of nodes to determine a sector sampling area. Secondly, a method of calculating the sampling quantity with the size of the sampling area dynamically changing is proposed in this paper. Lastly, the virtual anchor node, i.e., the unknown node that got the preliminary possible area (PLA), assists the other unknown nodes to reduce their PLAs. The last PLA is regarded as a filtering condition to filter out the conflicting sample points quickly. In this way, the filtered sample is close to its real coordinates. The simulation results show that the DSLA algorithm can greatly improve the positioning performance when ensuring the execution time is shorter and the localization coverage rate is higher. The localization error of the DSLA algorithm can be dropped to about 20%.
Processes in the real-time distributed control systems share a network medium to exchange their data. Performance of feedback control loops in the real-time distributed control systems is subject to the network-induced delays from sensor to controller, and from controller to actuator. The network-induced delays are directly dependent upon the data sampling times of control components which share a network medium. In this study, an algorithm of determining data sampling times is developed using the "window concept". where the sampling datafrom the control components dynamically share a limited number of windows. The scheduling algorithm is validated through the aimulation experiments.
베이지안 신경망 모형(Bayesian Neural Networks Models)에서 주어진 입력값(input)은 블랙 박스(Black-Box)와 같은 신경망 구조의 각 층(layer)을 거쳐서 출력값(output)으로 계산된다. 새로운 입력 데이터에 대한 예측값은 사후분포(posterior distribution)의 기대값(mean)에 의해 계산된다. 주어진 사전분포(prior distribution)와 학습데이터에 의한 가능도함수(likelihood functions)를 통해 계산되어진 사후분포는 매우 복잡한 구조를 갖게 됨으로서 기대값의 적분계산에 대한 어려움이 발생한다. 이때 확률적 추정에 의한 근사 방법인 몬테칼로 적분을 이용한다. 이러한 방법으로서 Hybrid Monte Carlo 알고리즘은 우수한 결과를 제공하여준다(Neal 1996). 본 논문에서는 Hybrid Monte Carlo 알고리즘과 기존에 많이 사용되고 있는 Gibbs sampling, Metropolis algorithm, 그리고 Slice Sampling등의 몬테칼로 방법들을 비교한다.
본 논문에서는 3D 방송의 기본적인 원리를 설명하고 3D 방송을 CS 기술을 적용하여 데이터 용량을 줄이는 방식을 제안한다. 샘플링 이론과 CS 기술의 차이점을 설명하고 개념과 동작원리를 설명한다. 최근 제안된 CS 센싱의 복원 알고리즘인 AMP(Approximate Message Passing)와 CoSaMP(Compressive Sampling Matched Pursuit)를 소개하고 이를 이용하여 이미지 데이터를 압축 복원하여 비교한다. 두 알고리즘의 계산시간을 비교하여 낮은 복잡도를 갖는 알고리즘을 판단한다.
유전자알고리즘의 교차나 돌연변이 연산을 직접적으로 사용하지 않고 개체군의 확률분포를 추정하여 보다 효율적인 탐색을 수행하려는 분포추정알고리즘이 여러 방법으로 제안되었다. 그러나 실제로 변수들간의 고차상관관계를 파악하는 일은 쉽지 않은 일이라 대부분의 경우 낮은 차수의 상관관계를 제한된 가정하에 추정하게 된다. 본 논문에서는 데이타의 고차상관관계를 표현할 수 있고 최적 해를 좀 더 효율적으로 찾을 수 있는 새로운 분포추정알고리즘을 제안한다. 제안된 알고리즘에서는 상관관계가 있을 것으로 추정되는 변수들의 집합으로 정의된 하이퍼에지로 구성된 랜덤 하이퍼그래프 모델을 구축하여 변수들 간의 고차상관관계를 표현하고, 베이지안 샘플링 알고리즘(Bayesian Sampling Algorithm)을 통해 다음 세대의 개체를 생성한다. 기만하는 빌딩블럭(deceptive building blocks)을 가진 분해가능(decomposable) 함수에 대하여 실험한 결과 성공적으로 최적해를 구할 수 있었으며 단순 유전자알고리즘과 BOA (Bayesian Optimization Algorithm)와 비교하여 좋은 성능을 얻을 수 있었다.
In detection of a scene change of the moving pictures which has massive information capacity, the temporal sampling method has faster searching speed than the sequential searching method for the whole moving pictures, yet employed searching algorithm and detection interval greatly affect searching time and searching precision. In this study, the whole moving pictures were primarily retrieved by the temporal sampling method. When there exist a scene change within the sampling interval, we suggested a fast searching algorithm using binary searching and derived an equation formula to determine optimal primary retrieval which can minimize computation, and showed the result of the experiment on MPEG moving pictures. The result of the experiment shows that the searching speed of the suggested algorithm is maximum 13 times faster than the one of he sequential searching method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.