• Title/Summary/Keyword: Sampling Algorithm

검색결과 1,010건 처리시간 0.022초

저 복잡도를 갖는 효율적인 그래프 신호의 샘플링 알고리즘 (Efficient Sampling of Graph Signals with Reduced Complexity)

  • 김윤학
    • 한국전자통신학회논문지
    • /
    • 제17권2호
    • /
    • pp.367-374
    • /
    • 2022
  • 그래프 노드상에서 발생하는 그래프 신호의 일부를 선택해서 만든 샘플링 신호로부터 원신호를 복원하기 위해, 복원오차를 최소화하기 위한 최적의 샘플링 집합을 선택하는 알고리즘에 관해 연구한다. 복잡도 개선을 위해 복원오차를 직접적으로 최소화하는 대신에, 복원오차의 상한값을 비용함수로 사용하고, QR분해 적용을 통해 발생하는 상삼각행렬의 대각선상에 위치하는 값으로 샘플링을 결정할 수 있게 하는, 저 복잡도를 갖는 반복적 탐욕알고리즘을 제안한다. 기존의 샘플링 선택 방법과 비교하여, 제안 알고리즘이 복원 성능 저하를 평균 5%미만으로 유지하면서, 약 3.5배 빠른 실행시간을 보임을 다양한 그래프 상황에서 실험을 통해 확인한다.

A Hybrid Algorithm for Online Location Update using Feature Point Detection for Portable Devices

  • Kim, Jibum;Kim, Inbin;Kwon, Namgu;Park, Heemin;Chae, Jinseok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권2호
    • /
    • pp.600-619
    • /
    • 2015
  • We propose a cost-efficient hybrid algorithm for online location updates that efficiently combines feature point detection with the online trajectory-based sampling algorithm. Our algorithm is designed to minimize the average trajectory error with the minimal number of sample points. The algorithm is composed of 3 steps. First, we choose corner points from the map as sample points because they will most likely cause fewer trajectory errors. By employing the online trajectory sampling algorithm as the second step, our algorithm detects several missing and important sample points to prevent unwanted trajectory errors. The final step improves cost efficiency by eliminating redundant sample points on straight paths. We evaluate the proposed algorithm with real GPS trajectory data for various bus routes and compare our algorithm with the existing one. Simulation results show that our algorithm decreases the average trajectory error 28% compared to the existing one. In terms of cost efficiency, simulation results show that our algorithm is 29% more cost efficient than the existing one with real GPS trajectory data.

다중경로 통신 시스템에서 톰슨 샘플링을 이용한 경로 선택 기법 (Thompson sampling based path selection algorithm in multipath communication system)

  • Chung, Byung Chang
    • 한국정보통신학회논문지
    • /
    • 제25권12호
    • /
    • pp.1960-1963
    • /
    • 2021
  • In this paper, we propose a multiplay Thompson sampling algorithm in multipath communication system. Multipath communication system has advantages on communication capacity, robustness, survivability, and so on. It is important to select appropriate network path according to the status of individual path. However, it is hard to obtain the information of path quality simultaneously. To solve this issue, we propose Thompson sampling which is popular in machine learning area. We find some issues when the algorithm is applied directly in the proposal system and suggested some modifications. Through simulation, we verified the proposed algorithm can utilize the entire network paths. In summary, our proposed algorithm can be applied as a path allocation in multipath-based communications system.

Bayesian Parameter Estimation of the Four-Parameter Gamma Distribution

  • Oh, Mi-Ra;Kim, Kyung-Sook;Cho, Wan-Hyun;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • 제14권1호
    • /
    • pp.255-266
    • /
    • 2007
  • A Bayesian estimation of the four-parameter gamma distribution is considered under the noninformative prior. The Bayesian estimators are obtained by the Gibbs sampling. The generation of the shape/power parameter and the power parameter in the Gibbs sampler is implemented using the adaptive rejection sampling algorithm of Gilks and Wild (1992). Also, the location parameter is generated using the adaptive rejection Metropolis sampling algorithm of Gilks, Best and Tan (1995). Finally, the simulation result is presented.

DSLA: Dynamic Sampling Localization Algorithm Based on Virtual Anchor Node

  • Chen, Yanru;Yan, Bingshu;Wei, Liangxiong;Guo, Min;Yin, Feng;Luo, Qian;Wang, Wei;Chen, Liangyin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권10호
    • /
    • pp.4940-4957
    • /
    • 2019
  • Compared with the localization methods in the static sensor networks, node localization in dynamic sensor networks is more complicated due to the mobility of the nodes. Dynamic Sampling Localization Algorithm Based on Virtual Anchor (DSLA) is proposed in this paper to localize the unknown nodes in dynamic sensor networks. Firstly, DSLA algorithm predicts the speed and movement direction of nodes to determine a sector sampling area. Secondly, a method of calculating the sampling quantity with the size of the sampling area dynamically changing is proposed in this paper. Lastly, the virtual anchor node, i.e., the unknown node that got the preliminary possible area (PLA), assists the other unknown nodes to reduce their PLAs. The last PLA is regarded as a filtering condition to filter out the conflicting sample points quickly. In this way, the filtered sample is close to its real coordinates. The simulation results show that the DSLA algorithm can greatly improve the positioning performance when ensuring the execution time is shorter and the localization coverage rate is higher. The localization error of the DSLA algorithm can be dropped to about 20%.

네트워크를 이용한 실시간 분산제어시스템에서 데이터 샘플링 주기 결정 알고리듬 (An Algorithm of Determining Data Sampling Times in the Network-Based Real-Time Distributed Control Systems)

  • Seung Ho Hong
    • 전자공학회논문지B
    • /
    • 제30B권1호
    • /
    • pp.18-28
    • /
    • 1993
  • Processes in the real-time distributed control systems share a network medium to exchange their data. Performance of feedback control loops in the real-time distributed control systems is subject to the network-induced delays from sensor to controller, and from controller to actuator. The network-induced delays are directly dependent upon the data sampling times of control components which share a network medium. In this study, an algorithm of determining data sampling times is developed using the "window concept". where the sampling datafrom the control components dynamically share a limited number of windows. The scheduling algorithm is validated through the aimulation experiments.

  • PDF

A Comparison study of Hybrid Monte Carlo Algorithm

  • 황진수;전성해;이찬범
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2000년도 추계학술발표회 논문집
    • /
    • pp.135-140
    • /
    • 2000
  • 베이지안 신경망 모형(Bayesian Neural Networks Models)에서 주어진 입력값(input)은 블랙 박스(Black-Box)와 같은 신경망 구조의 각 층(layer)을 거쳐서 출력값(output)으로 계산된다. 새로운 입력 데이터에 대한 예측값은 사후분포(posterior distribution)의 기대값(mean)에 의해 계산된다. 주어진 사전분포(prior distribution)와 학습데이터에 의한 가능도함수(likelihood functions)를 통해 계산되어진 사후분포는 매우 복잡한 구조를 갖게 됨으로서 기대값의 적분계산에 대한 어려움이 발생한다. 이때 확률적 추정에 의한 근사 방법인 몬테칼로 적분을 이용한다. 이러한 방법으로서 Hybrid Monte Carlo 알고리즘은 우수한 결과를 제공하여준다(Neal 1996). 본 논문에서는 Hybrid Monte Carlo 알고리즘과 기존에 많이 사용되고 있는 Gibbs sampling, Metropolis algorithm, 그리고 Slice Sampling등의 몬테칼로 방법들을 비교한다.

  • PDF

압축 센싱을 이용한 3D 방송 신호 전송 시스템 (Novel Transmission System of 3D Broadcasting Signals using Compressed Sensing)

  • 이선의;차재상;박구만;김진영
    • 한국위성정보통신학회논문지
    • /
    • 제8권4호
    • /
    • pp.130-134
    • /
    • 2013
  • 본 논문에서는 3D 방송의 기본적인 원리를 설명하고 3D 방송을 CS 기술을 적용하여 데이터 용량을 줄이는 방식을 제안한다. 샘플링 이론과 CS 기술의 차이점을 설명하고 개념과 동작원리를 설명한다. 최근 제안된 CS 센싱의 복원 알고리즘인 AMP(Approximate Message Passing)와 CoSaMP(Compressive Sampling Matched Pursuit)를 소개하고 이를 이용하여 이미지 데이터를 압축 복원하여 비교한다. 두 알고리즘의 계산시간을 비교하여 낮은 복잡도를 갖는 알고리즘을 판단한다.

고차상관관계를 표현하는 랜덤 하이퍼그래프 모델 진화를 위한 베이지안 샘플링 알고리즘 (A Bayesian Sampling Algorithm for Evolving Random Hypergraph Models Representing Higher-Order Correlations)

  • 이시은;이인희;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권3호
    • /
    • pp.208-216
    • /
    • 2009
  • 유전자알고리즘의 교차나 돌연변이 연산을 직접적으로 사용하지 않고 개체군의 확률분포를 추정하여 보다 효율적인 탐색을 수행하려는 분포추정알고리즘이 여러 방법으로 제안되었다. 그러나 실제로 변수들간의 고차상관관계를 파악하는 일은 쉽지 않은 일이라 대부분의 경우 낮은 차수의 상관관계를 제한된 가정하에 추정하게 된다. 본 논문에서는 데이타의 고차상관관계를 표현할 수 있고 최적 해를 좀 더 효율적으로 찾을 수 있는 새로운 분포추정알고리즘을 제안한다. 제안된 알고리즘에서는 상관관계가 있을 것으로 추정되는 변수들의 집합으로 정의된 하이퍼에지로 구성된 랜덤 하이퍼그래프 모델을 구축하여 변수들 간의 고차상관관계를 표현하고, 베이지안 샘플링 알고리즘(Bayesian Sampling Algorithm)을 통해 다음 세대의 개체를 생성한다. 기만하는 빌딩블럭(deceptive building blocks)을 가진 분해가능(decomposable) 함수에 대하여 실험한 결과 성공적으로 최적해를 구할 수 있었으며 단순 유전자알고리즘과 BOA (Bayesian Optimization Algorithm)와 비교하여 좋은 성능을 얻을 수 있었다.

동영상의 고속 장면분할을 위한 이진검색 알고리즘 (Bianry Searching Algorithm for HIgh Sped Scene Change Indexing of Moving Pictures)

  • 김성철;오일균;장종환
    • 한국정보처리학회논문지
    • /
    • 제7권4호
    • /
    • pp.1044-1049
    • /
    • 2000
  • In detection of a scene change of the moving pictures which has massive information capacity, the temporal sampling method has faster searching speed than the sequential searching method for the whole moving pictures, yet employed searching algorithm and detection interval greatly affect searching time and searching precision. In this study, the whole moving pictures were primarily retrieved by the temporal sampling method. When there exist a scene change within the sampling interval, we suggested a fast searching algorithm using binary searching and derived an equation formula to determine optimal primary retrieval which can minimize computation, and showed the result of the experiment on MPEG moving pictures. The result of the experiment shows that the searching speed of the suggested algorithm is maximum 13 times faster than the one of he sequential searching method.

  • PDF