• Title/Summary/Keyword: Sample Size Effect

Search Result 939, Processing Time 0.033 seconds

An elaboration on sample size determination for correlations based on effect sizes and confidence interval width: a guide for researchers

  • Mohamad Adam Bujang
    • Restorative Dentistry and Endodontics
    • /
    • v.49 no.2
    • /
    • pp.21.1-21.8
    • /
    • 2024
  • Objectives: This paper aims to serve as a useful guide for sample size determination for various correlation analyses that are based on effect sizes and confidence interval width. Materials and Methods: Sample size determinations are calculated for Pearson's correlation, Spearman's rank correlation, and Kendall's Tau-b correlation. Examples of sample size statements and their justification are also included. Results: Using the same effect sizes, there are differences between the sample size determination of the 3 statistical tests. Based on an empirical calculation, a minimum sample size of 149 is usually adequate for performing both parametric and non-parametric correlation analysis to determine at least a moderate to an excellent degree of correlation with acceptable confidence interval width. Conclusions: Determining data assumption(s) is one of the challenges to offering a valid technique to estimate the required sample size for correlation analyses. Sample size tables are provided and these will help researchers to estimate a minimum sample size requirement based on correlation analyses.

Sample Size Calculation for Cluster Randomized Trials (임상시험의 표본크기 계산)

  • Pak, Son-Il;Oh, Tae-Ho
    • Journal of Veterinary Clinics
    • /
    • v.31 no.4
    • /
    • pp.288-292
    • /
    • 2014
  • A critical assumption of the standard sample size calculation is that the response (outcome) for an individual patient is completely independent to that for any other patient. However, this assumption no longer holds when there is a lack of statistical independence across subjects seen in cluster randomized designs. In this setting, patients within a cluster are more likely to respond in a similar manner; patient outcomes may correlate strongly within clusters. Thus, direct use of standard sample size formulae for cluster design, ignoring the clustering effect, may result in sample size that are too small, resulting in a study that is under-powered for detecting the desired level of difference between groups. This paper revisit worked examples for sample size calculation provided in a previous paper using nomogram to easy to access. Then we present the concept of cluster design illustrated with worked examples, and introduce design effect that is a factor to inflate the standard sample size estimates.

Effect Analysis of Sample Size and Sampling Periods on Accuracy of Reliability Estimation Methods for One-shot Systems using Multiple Comparisons (다중비교를 이용한 샘플수와 샘플링 시점수의 원샷 시스템 신뢰도 추정방법 정확성에 대한 영향 분석)

  • Son, Young-Kap
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.435-441
    • /
    • 2012
  • This paper provides simulation-based results of effect analysis of sample size and sampling periods on accuracy of reliability estimation methods using multiple comparisons with analysis of variance. Sum of squared errors in estimated reliability measures were evaluated through applying seven estimation methods for one-shot systems to simulated quantal-response data. Analysis of variance was implemented to investigate change in these errors according to variations of sample size and sampling periods for each estimation method, and then the effect analysis on accuracy in reliability estimation was performed using multiple comparisons based on sample size and sampling periods. An efficient way to allocate both sample size and sampling periods for reliability estimation tests of one-shot systems is proposed in this paper from the effect analysis results.

A Study on Sample Size Dependence of Ferromagnetic Resonance in Polycrystalline Magnesium Ferrites (마그네슘 페라이트에서 강자성 공명의 시료 크기 의존성 연구)

  • 한기태;백종규
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.2
    • /
    • pp.163-170
    • /
    • 1995
  • Sample size effect on ferromagnetic resonance (FMR) in polycrystalline MgFe2O4 has been investigated. The signal intensity (SI), resonance field (Hres) and line width (ΔH) were found to increase proportionally to r3 with the increase of sample radius. The r3-depencence of SI means the complete penetration of rf-field into the sample, and the broadening of ΔH due to the sample size appears to be closely related to the amount of scattering sources like pores. Meanwhile, the values of Hres (0) and ΔH (0) obtained by extrapolating the data of Hres (r) and ΔH (r) measured at several sizes to r=0, were in good agreement with those calculated using the Schlomann's equations for internal field and ΔH, respectively. This result indicates that the discrepancy between the measured FMR parameters and those calculated by Schlomann's equation could be ascribed to the effect of sample size. Thus it is suggested that the size effect on FMR should be removed for the analysis of the FMR parameters. Meanwhile, our result for the size dependance of ΔH was found to be contradictory to those reported by Dionne, where ΔH 1/r at a given surface roughness. This discrepancy appears to arise from the difference in the definition of reading the line width.

  • PDF

Consolidation characteristics of soft ground using huge sample (대형 sample을 이용한 해안 연약지반 압밀특성에 관한 연구)

  • Hong, Sung-Jin;Lee, Moon-Joo;Jung, Doo-Suk;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1109-1114
    • /
    • 2008
  • To investigate the effect of sample size on coefficient of consolidation of non-homogeneous soil, the result of a large size consolidation test using a huge undisturbed sample with $1200mm(D){\times}2000mm(H)$ in dimension is compared with that of oedometer test using undisturbed small sample. In addition, test results are compared with those of same test using remold sample. Experimental results show that, due to the lump of sand/silt was mixed in sample, the coefficient of consolidation of undisturbed samples have a difference for each tests. Whereas, the difference of coefficient of consolidation between remolded large and small samples is not found. Because sample size affects the test results, sample must be carefully selected for non-homogeneous soil.

  • PDF

Two-stage Sampling for Estimation of Prevalence of Bovine Tuberculosis (이단계표본추출을 이용한 소결핵병 유병률 추정)

  • Pak, Son-Il
    • Journal of Veterinary Clinics
    • /
    • v.28 no.4
    • /
    • pp.422-426
    • /
    • 2011
  • For a national survey in which wide geographic region or an entire country is targeted, multi-stage sampling approach is widely used to overcome the problem of simple random sampling, to consider both herd- and animallevel factors associated with disease occurrence, and to adjust clustering effect of disease in the population in the calculation of sample size. The aim of this study was to establish sample size for estimating bovine tuberculosis (TB) in Korea using stratified two-stage sampling design. The sample size was determined by taking into account the possible clustering of TB-infected animals on individual herds to increase the reliability of survey results. In this study, the country was stratified into nine provinces (administrative unit) and herd, the primary sampling unit, was considered as a cluster. For all analyses, design effect of 2, between-cluster prevalence of 50% to yield maximum sample size, and mean herd size of 65 were assumed due to lack of information available. Using a two-stage sampling scheme, the number of cattle sampled per herd was 65 cattle, regardless of confidence level, prevalence, and mean herd size examined. Number of clusters to be sampled at a 95% level of confidence was estimated to be 296, 74, 33, 19, 12, and 9 for desired precision of 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06, respectively. Therefore, the total sample size with a 95% confidence level was 172,872, 43,218, 19,224, 10,818, 6,930, and 4,806 for desired precision ranging from 0.01 to 0.06. The sample size was increased with desired precision and design effect. In a situation where the number of cattle sampled per herd is fixed ranging from 5 to 40 with a 5-head interval, total sample size with a 95% confidence level was estimated to be 6,480, 10,080, 13,770, 17,280, 20.925, 24,570, 28,350, and 31,680, respectively. The percent increase in total sample size resulting from the use of intra-cluster correlation coefficient of 0.3 was 22.2, 32.1, 36.3, 39.6, 41.9, 42.9, 42,2, and 44.3%, respectively in comparison to the use of coefficient of 0.2.

Simulation Input Modeling : Sample Size Determination for Parameter Estimation of Probability Distributions (시뮬레이션 입력 모형화 : 확률분포 모수 추정을 위한 표본크기 결정)

  • Park Sung-Min
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.1
    • /
    • pp.15-24
    • /
    • 2006
  • In simulation input modeling, it is important to identify a probability distribution to represent the input process of interest. In this paper, an appropriate sample size is determined for parameter estimation associated with some typical probability distributions frequently encountered in simulation input modeling. For this purpose, a statistical measure is proposed to evaluate the effect of sample size on the precision as well as the accuracy related to the parameter estimation, square rooted mean square error to parameter ratio. Based on this evaluation measure, this sample size effect can be not only analyzed dimensionlessly against parameter's unit but also scaled regardless of parameter's magnitude. In the Monte Carlo simulation experiments, three continuous and one discrete probability distributions are investigated such as ; 1) exponential ; 2) gamma ; 3) normal ; and 4) poisson. The parameter's magnitudes tested are designed in order to represent distinct skewness respectively. Results show that ; 1) the evaluation measure drastically improves until the sample size approaches around 200 ; 2) up to the sample size about 400, the improvement continues but becomes ineffective ; and 3) plots of the evaluation measure have a similar plateau pattern beyond the sample size of 400. A case study with real datasets presents for verifying the experimental results.

Statistical notes for clinical researchers: effect size

  • Kim, Hae-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.4
    • /
    • pp.328-331
    • /
    • 2015
  • Though p values give information on statistical significance, they are confounded with the sample size. Effect size can make up the weak point, by providing information on the actual effect which is independent of the sample size. Therefore, reporting the effect size as well as the p value is recommended.

Review and Derivation of Sample Size Determination for Hypothesis Testing and Interval Estimation (가설검정 및 구간추정에서 샘플크기 결정규칙의 고찰 및 유도)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.11a
    • /
    • pp.461-471
    • /
    • 2012
  • Most useful statistical techniques in six sigma DMAIC are hypothesis testing and interval estimation. So this paper reviews and derives sample size formula by considering significance level, power of detectability and effect difference. The quality practioners can effectively interpret the practical and statistical significance with the rational sample sizing.

  • PDF

Sample size calculation for comparing time-averaged responses in K-group repeated binary outcomes

  • Wang, Jijia;Zhang, Song;Ahn, Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.3
    • /
    • pp.321-328
    • /
    • 2018
  • In clinical trials with repeated measurements, the time-averaged difference (TAD) may provide a more powerful evaluation of treatment efficacy than the rate of changes over time when the treatment effect has rapid onset and repeated measurements continue across an extended period after a maximum effect is achieved (Overall and Doyle, Controlled Clinical Trials, 15, 100-123, 1994). The sample size formula has been investigated by many researchers for the evaluation of TAD in two treatment groups. For the evaluation of TAD in multi-arm trials, Zhang and Ahn (Computational Statistics & Data Analysis, 58, 283-291, 2013) and Lou et al. (Communications in Statistics-Theory and Methods, 46, 11204-11213, 2017b) developed the sample size formulas for continuous outcomes and count outcomes, respectively. In this paper, we derive a sample size formula to evaluate the TAD of the repeated binary outcomes in multi-arm trials using the generalized estimating equation approach. This proposed sample size formula accounts for various correlation structures and missing patterns (including a mixture of independent missing and monotone missing patterns) that are frequently encountered by practitioners in clinical trials. We conduct simulation studies to assess the performance of the proposed sample size formula under a wide range of design parameters. The results show that the empirical powers and the empirical Type I errors are close to nominal levels. We illustrate our proposed method using a clinical trial example.