• Title/Summary/Keyword: Saltmarsh

Search Result 5, Processing Time 0.019 seconds

Environmetal Characteristics of Reed Habitat in Nakdong Estuary Saltmarsh (낙동강 하구 염습지의 갈대서식 환경 특성)

  • Ryu, Sung-Hoon;Kim, Kyung-Hoi;Lee, In-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.2
    • /
    • pp.187-194
    • /
    • 2016
  • In this paper, as a basic research for the restoration and construction of easuary saltmarsh, To observe the habitat environment for reed, we observed sediment environment (Particle size, water content, pH, nutrient analysis ($NH_4-N$, $PO_4-P$)), ground water level, ground level, individual numbers of reed, maximum reed height. As a result of this study, sediment particle size and moisture content of soil on the study area not effected reed habitat, pH showed no difference in each site. $NH_4-N$ and $PO_4-P$ concentration also no difference in each site. Ground level of reed habitat area is more higher than none reed habitat. However Ground water level of reed habitat area is more lower than none reed habitat. As a results of analyzing the influence factors for reed habitat in Nakdong estuary saltmarsh, ground water level and ground level is most influenced factor for reed habitat.

A Study on the Eco-Environmental Change of Coastal Area by the Sea Level Rise (해수면 상승에 따른 해안지역 생태환경 변화)

  • Kim, Nam-Shin;Lee, Chang-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.3
    • /
    • pp.53-63
    • /
    • 2010
  • The global sea level rise has an effect on eco-environmental change by the inundation and erosion in the coastal area. Forecasting model on the change of morpho-ecological environments by the sea level change will give us information for coastal area management by predicting environmental changes of the up-coming future. This research aimed to foresee eco-environmental changes by the sea level rise in coastal area. Prediction model used SLAMM model developed to forecast coastal changes by IPCC scenario. The model predicted centennial environmental changes in the mouth of Han river and Nakdong river, Suncheon and Hampyeung bay as case areas. To sum up the research findings, in the estuary of the Han river, tidal flat was gradually disappeared from the year 2075, scrubmarsh and saltmarsh belts were developed. In the Nakdong River estuary, scrubmarsh was decreased from the year 2025, tidal flat was deposited from the year 2050, and also, the Gimhae plain was partially inundated, and wetlands were formed. In the Hampyeung bay, saltmarsh was deposited in the year 2025, tidal flat expanded until 2050 was partially submerged after that time. Tidal flat of Suncheon bay was disappeared by the inundation after 2025, and saltmarsh was developed in the embayment.

Ecological Division of Habitats by Analysis of Vegetation Structure and Soil Environment -A Case Study on the Vegetation in the Kimpo Landfills and Its Periphery Region- (식생구조와 토양환경 분석을 통한 서식처의 생태학적 구분 -김포매립지와 그 근린 지역의 식생을 사례로 -)

  • Kim, Jong-Won;Yong-Kyoo Jong
    • The Korean Journal of Ecology
    • /
    • v.18 no.3
    • /
    • pp.307-321
    • /
    • 1995
  • Division of ecoregions having respective functions was attempted through quantitative and qualitative analysis on vegetation diversity, and heterogeneity and on soil environment of the study sites. Field research was carried out in a square of 81 ㎢ around Andongpo (126°38'E, 37°30'N), Kimpo-gun, Kyonggi provice. Conventional methods applied are as follows: classical syntaxonomy by the Zurich-Montpellier School, interpolation method to determine the degree of diversity, heterogeneity and distribution pattern of vegetation, and correlation analysis between soil properties and plant communities. 41 plant communities were identified and composed of 6 forests, 4 mantle and 31 herb communities including 6 saltmarsh plant communities. In a mesh, number of plant communities was highly correlated to the number of species. The highest number of plant community and species was 25 communities·km-2·mesh-1 and 381 species· km-2·mesh-1 ,and the highest value of vegetation heterogeneity was 28.1 species· community-1·mesh-1. Their lowest numbers were 4 communities·km-2·mesh-1. and 28 species·km-2·mesh-1. and 7 species·community-1·mesh-1, respectively. Contour map on vegetation diversity and heterogeneity enabled us to establish two regions; coastal and inland vegetation. Isoline 〔150〕,〔10〕and〔10〕and〔15〕on the species diversity, the community diversity and the vegetation heterogeneity, respectively, were regarded as ecolines in the study area. Cl- content was recognized as the most important factor from correlation analysis between soil properties. Ordination of sites indicated that the study area be divided into two edaphic types: inland and coastal habitats. It was considered that the extent of desalinization in soil played a major role in determining the species composition in the reclamed area. By matching edaphic division of habitats with division of vegetation structures, designation of ecoregion was endorsed. The approach of current study was suggested as an effective tool to implement an assessment of the vegetation dynamics by the disparity of natural environment and anthropogenic interferences.

  • PDF

Distribution and Botanical Characteristics of Unrecorded Alien Weed Spartina anglica in Korea (미기록 외래잡초 영국갯끈풀의 국내 분포와 식물학적 특성)

  • Kim, Eun-Kyu;Kil, Jihyon;Joo, Young-Kyoo;Jung, Young-Sang
    • Weed & Turfgrass Science
    • /
    • v.4 no.1
    • /
    • pp.65-70
    • /
    • 2015
  • We have found the plants belonging to the genus Spartina which has not yet been reported for the flora of Korea. This has been distributed at Dongmak seashore in Ganghwado since 2012. These were identified as common cordgrass (Spartina anglica C. E. Hubb.) belonging to the family Poaceae, the genus Spartina. It is a perennial halophyte as an alien weed that can grow in the tidal flat, native to southern England. Here, we named it for 'Young-guk-Gaet-ggeun-pool' in Korean refer the origin, reported the distribution, spreading condition, and botanical characteristics of common cordgrass. In China, Spartina anglica was introduced in 1963, it was approved that it had benefit in a bioengineering side firstly. But it was known that as a highly invasive plant to make a monotype meadow of Spartina anglica which has deteriorate the ecological function of saltmarsh. And also it has another problem that is not easy to eradicate. The spreading of Spartina anglica which was appeared in the West coast of Korea may threaten severely to the domestic mudflat and estuary ecosystem. For the maintenance of mudflat ecosystem soundly, continuous monitoring and active eradication plans are required.

Tracing Source and Concentration of Riverine Organic Carbon Transporting from Tamjin River to Gangjin Bay, Korea (탐진강-강진만의 댐하류 열린하구 시스템에서 유기탄소의 조성 및 기원 변화 연구)

  • Park, Hyung-Geun;Kang, Dong-Won;Shin, Kyung-Hoon;Ock, Giyoung
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.422-431
    • /
    • 2017
  • The biogeochemical information of riverine organic matter gives a detailed and integrated recording of natural and anthropogenic activity within a watershed. To investigate the changes in quality and quantity of organic carbon transporting from mountain to ocean via river channels, we estimated the concentrations of dissolved (DOC) and particulate organic carbon (POC), and then traced the source origin of POC using stable carbon isotopes ratio before and after summer rainfalls in the Tamjin River and Ganjin Bay, Korea. Along the small watershed, a total of 13 sites including headwaters, dam reservoir, river and estuary were established for the study. We found some interesting findings in the aspect of distribution of DOC/POC concentration changing their origin sources dynamically flowing downstream. In particular, the river channel transport downstream mainly DOC to river mouth, although upper dam reservoir increased POC concentration by phytoplankton production in summer. Whereas, in the river mouth and estuary, POC was dominated not only by local supply from nearby reed saltmarsh, but also by marine phytoplankton production, respectively. The findings can contribute to increasing the understanding of riverine organic carbon transport in upper large dam and lower open estuary system.