• 제목/요약/키워드: Salt stress tolerance

검색결과 188건 처리시간 0.031초

Biomass partitioning and physiological responses of four Moroccan barley varieties subjected to salt stress in a hydroponic system

  • Said Bouhraoua;Mohamed Ferioun;Srhiouar Nassira;Abdelali Boussakouran;Mohamed Akhazzane ;Douae Belahcen;Khalil Hammani;Said Louahlia
    • Journal of Plant Biotechnology
    • /
    • 제50권
    • /
    • pp.115-126
    • /
    • 2023
  • A hydroponics experiment was performed to study the physiological and biochemical changes in Moroccan barley (Hordeum vulgare L.) varieties cultivated under salt stress conditions. Four barley varieties were grown under exposure to three salt concentrations, including 0, 200, and 300 mM NaCl. The ANOVA for both salt stress-sensitive and resistant varieties indicated that salt treatment represented the main source of variability in all studied traits. Salt treatment significantly reduced root and shoot dry weight (RDW and SDW), relative water content (RWC), and chlorophyll content (Chl a, Chl b, and Chl T). However, increases in electrolyte leakage (EL) along with proline and total soluble sugar (TSS) contents were recorded. In addition, large variations in all measured traits were found between varieties. The 'Massine' and 'Laanaceur' varieties displayed relatively higher RDW and SDW values. The 'Amira' and 'Adrar' varieties showed lower RWC values and Chl contents than those of the controls indicating their relative sensitivity to salt stress. Principal component analysis revealed that most of the variation was captured by PC1 (72% of the total variance) which grouped samples into three categories according to salt treatment. Correlation analyses highlighted significant associations between most parameters. Positive relationships were found between RDW, SDW, RWC, Chl content, and soluble proteins contents, while all of these parameters were negatively associated with EL intensity, proline content, and TSS content. The results from this study showed that the 'Massine' and 'Laanaceur' varieties were relatively salt-tolerant. These two salt-tolerant varieties present a good genetic background for breeding of barley varieties showing high salt tolerance.

Development of efficient protocol for screening of rice genotypes using physiological traits for salt tolerance

  • Kim, Sung-Mi;Reddy, Inja Naga Bheema Lingeswar;Yoon, In Sun;Kim, Beom-Gi;Kwon, Taek-Ryoun
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.189-189
    • /
    • 2017
  • Salinity is one of the major abiotic stresses that severely affect crop production throughout the world; especially rice plant which is generally categorized as a typical glycophyte as it cannot grow in the presence of salinity. Phenotypic resistance of salinity is expressed as the ability to survive and grow in a salinity condition. Salinity resistance has, at least implicitly, been treated as a single trait. Physiological studies of rice suggest that a range of characteristics (such as low shoot sodium concentration, compartmentation of salt in older rather than younger leaves, high potassium concentration, high $K^+/Na^+$ ratio, high biomass and plant vigour) would increase the ability of the plant to cope with salinity. Criteria for evaluating and screening salinity tolerance in crop plants vary depending on the level and duration of salt stress and the plant developmental stage. Plant growth responses to salinity vary with plant life cycle; critical stages sensitive to salinity are germination, seedling establishment and flowering. We have established a standard protocol to evaluate large rice germplasms for overall performance based on specific physiological traits for salt tolerance at seedling stage. This protocol will help in identifying germplasms which can perform better in the presence of different salinity treatments based on single trait and also combination of different physiological traits. The salt tolerant germplasm can be taken forward into developing better varieties by conventional breeding and exploring genes for salt tolerance.

  • PDF

Salt-induced Differential Gene Expression in Italian Ryegrass (Lolium multiflorum Lam.) Revealed by Annealing Control Primer Based GeneFishing approach

  • Lee, Ki-Won;Lee, Sang-Hoon;Choi, Gi Jun;Ji, Hee Jung;Hwang, Tae Young;Kim, Won Ho;Rahman, Md. Atikur
    • 한국초지조사료학회지
    • /
    • 제37권3호
    • /
    • pp.231-236
    • /
    • 2017
  • Salt stress is one of the most limiting factors that reduce plant growth, development and yield. However, identification of salt-inducible genes is an initial step for understanding the adaptive response of plants to salt stress. In this study, we used an annealing control primer (ACP) based GeneFishing technique to identify differentially expressed genes (DEGs) in Italian ryegrass seedlings under salt stress. Ten-day-old seedlings were exposed to 100 mM NaCl for 6 h. Using 60 ACPs, a total 8 up-regulated genes were identified and sequenced. We identified several promising genes encoding alpha-glactosidase b, light harvesting chlorophyll a/b binding protein, metallothionein-like protein 3B-like, translation factor SUI, translation initiation factor eIF1, glyceraldehyde-3-phosphate dehydrogenase 2 and elongation factor 1-alpha. These genes were mostly involved in plant development, signaling, ROS detoxification and salt acclimation. However, this study provides new molecular information of several genes to understand the salt stress response. These genes would be useful for the enhancement of salt stress tolerance in plants.

Overexpression of the Small Heat Shock Protein, PtsHSP19.3 from Marine Red Algae, Pyropia tenera (Bangiales, Rhodophyta) Enhances Abiotic Stress Tolerance in Chlamydomonas

  • Jin, Yujin;Yang, Sungwhan;Im, Sungoh;Jeong, Won-Joong;Park, EunJeong;Choi, Dong-Woog
    • Journal of Plant Biotechnology
    • /
    • 제44권3호
    • /
    • pp.287-295
    • /
    • 2017
  • Water temperature is one of the major factors that impacts the growth and life cycle of Pyropia tenera, one of the most valuable and cultivated marine red algae belonging to Bangiales (Rhodophytes). We analyzed transcriptome from gametophyte of P. tenera under normal and high temperature conditions, and identified four small heat shock proteins (sHSPs). They have no significant amino acid sequence homology with known proteins in public databases except PhsHSP22 from Pyropia haitanensis. PtsHSP19.3 gene responded to high temperature but slightly or not to desiccation, freezing or high salt condition. When the PtsHSP19.3 gene was overexpressed in Chlamydomonas reinhardtii, transformed Chlamydomonas lines revealed much higher growth rate than that of control cells under heat stress condition. Transformed cells also grew well in those of the control cell onto the medium containing high salt or $H_2O_2$. When the PtsHSP19.3 was fused to GFP and introduced into tobacco protoplast, fluorescence was detected at several spots. Results indicate that PtsHSP19.3 may form super-molecular assembles and be involved in tolerance to heat stress.

Putative fructose-1,6-bisphosphate aldolase 1 (AtFBA1) affects stress tolerance in yeast and Arabidopsis

  • Moon, Seok-Jun;Shin, Dong-Jin;Kim, Beom-Gi;Byun, Myung-Ok
    • Journal of Plant Biotechnology
    • /
    • 제39권2호
    • /
    • pp.106-113
    • /
    • 2012
  • Glycolysis is responsible for the conversion of glucose into pyruvate and for supplying reducing power and several metabolites. Fructose-1,6-bisphosphate aldolase (AtFBA1), a central enzyme in the glycolysis pathway, was isolated by functional complementation of the salt-sensitive phenotype of a calcineurin (CaN)-deficient yeast mutant. Under high salinity conditions, aldolase activity and the concentration of NADH were compromised. However, expression of AtFBA1 maintained aldolase activity and the NADH level in yeast cells. AtFBA1 shares a high degree of sequence identity with known class I type aldolases, and its expression was negatively regulated by stress conditions including NaCl. The fusion protein GFP-AtFBA1 was localized in the cytosol of Arabidopsis protoplasts. The seed germination and root elongation of AtFBA1 knock-out plants exhibited sensitivity to ABA and salt stress. These results indicate that AtFBA1 expression and aldolase activity is important for stress tolerance in yeast and plants.

들깨 γ-TMT 형질전환 담배의 색소성분 변화 및 염 스트레스 내성 증가 (Transgenic tobacco with γ-TMT of perilla showed increased salt resistance and altered pigment synthesis)

  • 우희종;성좌경;김정봉;김나영;이시명;신공식;임선형;서석철;김경환;조용구
    • Journal of Plant Biotechnology
    • /
    • 제35권4호
    • /
    • pp.329-335
    • /
    • 2008
  • Tocopherols are essential lipophilic antioxidant in human cells, while little is known about its function in plant tissues. To study the impact of composition and content of tocopherols on stress tolerance, tobacco (Nicotiana tabacum) was transformed with a construct containing a cDNA insert encoding $\gamma$-tocopherol methyltransferase ($\gamma$-TMT/VTE4) from perilla under the control of the cauliflower mosaic virus (CaMV) 35S promoter. The transgenic tobacco was confirmed by PCR and RT-PCR. The total content and composition of tocopherols in the transgenic lines were similar with wild type controls. However, chlorophyll-a and carotenoid content in the transgenic lines were increased by up to 45% (P<0.01) and 39% (P<0.02), respectively. Also, the over-expression of $\gamma$-TMT increased the salt stress tolerance in tobacco plants. These results demonstrate that over-expression of $\gamma$-TMT gene in tocopherol bio-synthetic pathway can increase salt stress tolerance and contents of chlorophyll-a and carotenoid in transgenic tobacco plants.

배추 염 저항성 관련 유전자의 네트워크 모델 구축 (Construction of a Network Model to Reveal Genes Related to Salt Tolerance in Chinese Cabbage)

  • 이기호;유재경;박지현;박영두
    • 원예과학기술지
    • /
    • 제32권5호
    • /
    • pp.684-693
    • /
    • 2014
  • 저온, 건조, 염과 같은 비생물적 스트레스는 식물의 생리적 형태적 변화와 수확량 감소를 초래한다. 이러한 이유로 식물체는 불리한 환경을 극복하기 위해 다양한 대사과정에 관련된 유전자들간의 복잡한 상호 관계를 조절함으로써 저항성을 획득한다. 본 연구는 배추에서 염 스트레스에 반응하는 유전자를 다각적으로 분석하기 위해 상호발현 네트워크를 구축하였다. 네트워크를 구축하기 위하여 배추를 염스트레스 조건 하에서 시간 경과에 따라 KBGP-24K 마이크로어레이 분석을 실시한 [BrEMD (Brassica rapa EST and Microarray Database)] 실험 결과를 수집하여 분석하였다. 구축된 네트워크 모델은 1,853개 node, 5,740개 edge, 및 142개 connected component(상관계수 > 0.85)로 구성되었다. 구축된 네트워크 분석 결과, ROS 신호 전달을 통한 N$Na^+$ 수송활성화와 proline 축적이 배추의 염 저항성 획득과 밀접한 연관이 있는 것으로 판단하였다.

Heterologous Expression of a Putative $K^+/H^+$ Antiporter of S. coelicolor A3(2) Enhances $K^+$, Acidic-pH Shock Tolerances, and Geldanamycin Secretion

  • Song, Jae Yang;Seo, Young Bin;Hong, Soon-Kwang;Chang, Yong Keun
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권2호
    • /
    • pp.149-155
    • /
    • 2013
  • Heterologous expression of a putative $K^+/H^+$ antiporter of Streptomyces coelicolor A3(2) (designated as sha4) in E. coli and Streptomyces hygroscopicus JCM4427 showed enhanced tolerance to $K^+$ stress, acidic-pH shock, and/or geldanamycin production under $K^+$ stress. In a series of $K^+$ extrusion experiments with sha4-carrying E. coli deficient in the $K^+/H^+$ antiporter, a restoration of impaired $K^+$ extrusion activity was observed. Based on this, it was concluded that sha4 was a true $K^+/H^+$ antiporter. In different sets of experiments, the sha4-carrying E. coli showed significantly improved tolerances to $K^+$ stresses and acidic-pH shock, whereas sha4-carrying S. hygroscopicus showed an improvement in $K^+$ stress tolerance only. The sha4-carrying S. hygroscopicus showed much higher geldanamycin productivity than the control under $K^+$ stress condition. In another set of experiments with a production medium, the secretion of geldanamycin was also significantly enhanced by the expression of sha4.

Protein Profiles in Response to Salt Stress in Seedling of Salt Tolerant Rice Mutants

  • Song, Jae Young;Kim, Dong Sub;Lee, Myung-Chul;Lee, Kyung Jun;Kim, Jin-Baek;Kim, Sang Hoon;Ha, Bo-Keun;Lee, Young-Keun;Kang, Si-Yong
    • 방사선산업학회지
    • /
    • 제6권2호
    • /
    • pp.129-138
    • /
    • 2012
  • Proteomic analysis was performed in order to identify proteomic changes by salt stress between the Japonica cv. Donganbyeo (WT) and two salt-tolerant (ST) mutant lines by using the SDS-PAGE and 2-DE. Two salt tolerant rice mutant lines, ST-87 and ST-301, were selected by in vitro mutagenesis with gamma-ray. Three-week-old seedlings were treated with 171 mM NaCl for 7 days. In the SDS-PAGE, three proteins with molecular weights of 27, 46 and 58 kDa were highly increased under salt treatment. Total proteins from shoots of both WT and ST-lines were separated by two-dimensional gel electrophoresis. In 2-DE, 201, 226, 217 and 213 protein spots were detected in the untreated-or treated-WT and untreated- or treated-ST-87, respectively. Of theses, 17 and 10 protein spots were up- and down-regulated under salt stress in the WT, respectively. While, 16 and 8 protein spots were up- and down-regulated under salt stress in the ST-87, respectively, compared with the untreated plants. High intensity or de novo synthesized proteins were analyzed by MALDI-TOF/MS analysis.

Confirmation of Drought Tolerance of Ectopically Expressed AtABF3 Gene in Soybean

  • Kim, Hye Jeong;Cho, Hyun Suk;Pak, Jung Hun;Kwon, Tackmin;Lee, Jai-Heon;Kim, Doh-Hoon;Lee, Dong Hee;Kim, Chang-Gi;Chung, Young-Soo
    • Molecules and Cells
    • /
    • 제41권5호
    • /
    • pp.413-422
    • /
    • 2018
  • Soybean transgenic plants with ectopically expressed AtABF3 were produced by Agrobacterium-mediated transformation and investigated the effects of AtABF3 expression on drought and salt tolerance. Stable Agrobacterium-mediated soybean transformation was carried based on the half-seed method (Paz et al. 2006). The integration of the transgene was confirmed from the genomic DNA of transformed soybean plants using PCR and the copy number of transgene was determined by Southern blotting using leaf samples from $T_2$ seedlings. In addition to genomic integration, the expression of the transgenes was analyzed by RT-PCR and most of the transgenic lines expressed the transgenes introduced. The chosen two transgenic lines (line #2 and #9) for further experiment showed the substantial drought stress tolerance by surviving even at the end of the 20-day of drought treatment. And the positive relationship between the levels of AtABF3 gene expression and drought-tolerance was confirmed by qRT-PCR and drought tolerance test. The stronger drought tolerance of transgenic lines seemed to be resulted from physiological changes. Transgenic lines #2 and #9 showed ion leakage at a significantly lower level (P < 0.01) than ${\underline{n}}on-{\underline{t}}ransgenic$ (NT) control. In addition, the chlorophyll contents of the leaves of transgenic lines were significantly higher (P < 0.01). The results indicated that their enhanced drought tolerance was due to the prevention of cell membrane damage and maintenance of chlorophyll content. Water loss by transpiration also slowly proceeded in transgenic plants. In microscopic observation, higher stomata closure was confirmed in transgenic lines. Especially, line #9 had 56% of completely closed stomata whereas only 16% were completely open. In subsequent salt tolerance test, the apparently enhanced salt tolerance of transgenic lines was measured in ion leakage rate and chlorophyll contents. Finally, the agronomic characteristics of ectopically expressed AtABF3 transgenic plants ($T_2$) compared to NT plants under regular watering (every 4 days) or low rate of watering condition (every 10 days) was investigated. When watered regularly, the plant height of drought-tolerant line (#9) was shorter than NT plants. However, under the drought condition, total seed weight of line #9 was significantly higher than in NT plants (P < 0.01). Moreover, the pods of NT plants showed severe withering, and most of the pods failed to set normal seeds. All the evidences in the study clearly suggested that overexpression of the AtABF3 gene conferred drought and salt tolerance in major crop soybean, especially under the growth condition of low watering.