• Title/Summary/Keyword: Salt resistance

Search Result 603, Processing Time 0.034 seconds

A Study on the Crevice Corrosion for Ferritic Stainless Steel (페라이트 스테인리스강의 틈부식에 대한 연구)

  • Baik Shin-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.1 s.20
    • /
    • pp.51-54
    • /
    • 2004
  • In recently days, the breed fish farm is increased in the beach side for farming fish. In such a farm, the heater is requested for preventing freezing in cold season. The heating material are requested high corrosion resistance and strength for endurance high corrosive salt and pressure. In case of low corrosion resistance and/or strength, the heating element shall be broke down and eventually make spillage or leaking contaminated salt. In the most cases, crevice corrosion is localized form of corrosion usually associated with a stagnant solution on the micro-environmental level. In this study, the crevice corrosion of Ferritic type 430 stainless steel is investigated. The size of specimen is $15{\times}20{\times}3mmt$. Test solution is 1N H2SO4 + 0.05N NaCl. The artificial crevice gap size is $0.24{\times}3{\times}15mmL$. Crevice corrosion is measured under applied voltage 300mV(SCE) to the external surface. the result of this study showed that 1) the induced time for initiation of crevice is 750seconds, 2) potential is dropped in the crevice from the top of gap opening from -320 to -399mV. The result confirmed that the potential drop(IR mechanism) in the crevice is one of mechanism for crevice corrosion.

  • PDF

Properties of the White 5K Au-Ag-In Alloys with Indium Contents (백색 5K Au-Ag-In 합금재의 인듐 첨가량에 따른 물성 변화)

  • Song, Jeongho;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.381-385
    • /
    • 2017
  • In order to replace 14K white gold alloys, the properties of 5K white gold alloys (Au20-Ag80) were investigated by changing the contents of In (0.0-10.0 wt%). Energy dispersive X-ray spectroscopy (EDS) was used to determine the precise content of alloys. Properties of the alloys such as hardness, melting point, color difference, and corrosion resistance were determined using Vickers Hardness test, TGA-DTA, UV-VIS-NIR-colorimetry, and salt-spray tests, respectively. Wetting angle analysis was performed to determine the wettability of the alloys on plaster. The results of the EDS analysis confirmed that the Au-Ag-In alloys had been fabricated with the intended composition. The results of the Vickers hardness test revealed that each Au-Ag-In alloy had higher mechanical hardness than that of 14K white gold. TGA-DTA analysis showed that the melting point decreased with an increase in the In content. In particular, the alloy containing 10.0 wt% In showed a lower melting temperature (> $70^{\circ}C$) than the other alloys, which implied that alloys containing 10.0 wt% In can be used as soldering materials for Au-Ag-In alloys. Color difference analysis also revealed that all the Au-Ag-In alloys showed a color difference of less than 6.51 with respect to 14K white gold, which implied a white metallic color. A 72-h salt-spray test confirmed that the Au-AgIn alloys showed better corrosion resistance than 14K white gold alloys. All Au-Ag-In alloys showed wetting angle similar to that of 14K white gold alloys. It was observed that the 10.0 wt% In alloy had a very small wetting angle, further confirming it as a good soldering material for white metals. Our results show that white 5K Au-Ag-In alloys with appropriate properties might be successful substitutes for 14K white gold alloys.

A Durability Assessment on Complex Deterioration of Concrete with Ground Granulated Blast-Furnace Slag Replacement (복합열화 환경하에서의 고로슬래그미분말 사용 콘크리트의 내구성능 평가)

  • Lee, Seung-Hoon;Kim, Hyung-Doo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.171-175
    • /
    • 2010
  • This paper presents the experimental results of frost durability characteristics including freezing-thawing and de-icing salt scaling of the concrete for gutter of the road and marine structure. Mixtures were proportioned with the three level of water-binder ratio(W/B) and three binder compositions corresponding to Type I cement with 0%, 30% and 50% GGBS(Ground granulated blast furnace slag) replacement. Also, two different solutions of calcium chloride were used to evaluate their effect on the frost durability resistance. Specially, in case of complex of freezing and thawing with salt and carbonation, the deterioration of concrete surface is evaluated. Test results showed that the BFS30 and BFS50 mixture exhibited higher durability and lower mass loss values than those made with OPC mix and the use of GGBS can be used effectively in terms of economy and frost durability of the concrete to be in complex deterioration. Therefore, the resistance to complex deterioration with freezing-thawing was strongly influenced by the strength and the type of cement.

Genomic Analysis of the Extremely Halophilic Archaeon Halobacterium noricense CBA1132 Isolated from Solar Salt That Is an Essential Material for Fermented Foods

  • Lim, Seul Ki;Kim, Joon Yong;Song, Hye Seon;Kwon, Min-Sung;Lee, Jieun;Oh, Young Jun;Nam, Young-Do;Seo, Myung-Ji;Lee, Dong-Gi;Choi, Jong-Soon;Yoon, Changmann;Sohn, Eunju;Rahman, MD. Arif-Ur;Roh, Seong Woon;Choi, Hak-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1375-1382
    • /
    • 2016
  • The extremely halophilic archaeon Halobacterium noricense is a member of the genus Halobacterium. Strain CBA1132 (= KCCM 43183, JCM 31150) was isolated from solar salt. The genome of strain CBA1132 assembled with 4 contigs, including three rRNA genes, 44 tRNA genes, and 3,208 open reading frames. Strain CBA1132 had nine putative CRISPRs and the genome contained genes encoding metal resistance determinants: copper-translocating P-type ATPase (CtpA), arsenical pump-driving ATPase (ArsA), arsenate reductase (ArsC), and arsenical resistance operon repressor (ArsR). Strain CBA1132 was related to Halobacterium noricense, with 99.2% 16S rRNA gene sequence similarity. Based on the comparative genomic analysis, strain CBA1132 has distinctly evolved; moreover, essential genes related to nitrogen metabolism were only detected in the genome of strain CBA1132 among the reported genomes in the genus Halobacterium. This genome sequence of Halobacterium noricense CBA1132 may be of use in future molecular biological studies.

Characterization of PAH (Polycyclic Aromatic Hydrocarbon)-Degrading Bacteria Isolated from Commercial Gasoline (상용 휘발유로부터 분리한 다환 방향족 탄화수소(PAH) 분해 세균의 특성)

  • Kwon, Tae-Hyung;Woo, Jung-Hee;Park, Nyun-Ho;Kim, Jong-Shik
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.3
    • /
    • pp.244-251
    • /
    • 2015
  • BACKGROUND: Recent studies have described the importance of bacteria that can degrade polycyclic aromatic hydrocarbons (PAHs). Here we screened bacterial isolates from commercial gasoline for PAH degraders and characterized their ability to degrade PAHs, lipids and proteins as well as their enantioselective epoxide hydrolase activity, salt tolerance, and seawater survival. METHODS AND RESULTS: One hundred two bacteria isolates from commercial gasoline were screened for PAH degraders by adding selected PAHs on to the surface of agar plates by the sublimation method. A clear zone was found only around the colonies of PAH degraders, which accounted for 13 isolates. These were identified as belonging to Bacillus sp., Brevibacterium sp., Micrococcus sp., Corynebacterium sp., Arthrobacter sp., and Gordonia sp. based on 16S rRNA sequences. Six isolates belonging to Corynebacterium sp., 3 of Micrococcus sp., Arthrobacter sp. S49, and Gordonia sp. H37 were lipid degraders. Arthrobacter sp. S49 was the only isolate showing high proteolytic activity. Among the PAH-degrading bacteria, Arthrobacter sp. S49, Brevibacterium sp. S47, Corynebacterium sp. SK20, and Gordonia sp. H37 showed enantioselective epoxide hydrolase activity with biocatalytic resolution of racemic styrene oxide. Among these, highest enantioselective hydrolysis activity was seen in Gordonia sp. H37. An intrinsic resistance to kanamycin was observed in most of the isolates and Corynebacterium sp. SK20 showed resistance to additional antibiotics such as tetracycline, ampicillin, and penicillin. CONCLUSION: Of the 13 PAH-degraders isolated from commercial gasoline, Arthrobacter sp. S49 showed the highest lipid and protein degrading activity along with high active epoxide hydrolase activity, which was the highest in Gordonia sp. H37. Our results suggest that bacteria from commercial gasoline may have the potential to degrade PAHs, lipids, and proteins, and may possess enantioselective epoxide hydrolase activity, high salt tolerance, and growth potential in seawater.

Investigation of Characteristics of Passive Heat Removal System Based on the Assembled Heat Transfer Tube

  • Wu, Xiangcheng;Yan, Changqi;Meng, Zhaoming;Chen, Kailun;Song, Shaochuang;Yang, Zonghao;Yu, Jie
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1321-1329
    • /
    • 2016
  • To get an insight into the operating characteristics of the passive residual heat removal system of molten salt reactors, a two-phase natural circulation test facility was constructed. The system consists of a boiling loop absorbing the heat from the drain tank, a condensing loop consuming the heat, and a steam drum. A steady-state experiment was carried out, in which the thimble temperature ranged from $450^{\circ}C$ to $700^{\circ}C$ and the system pressure was controlled at levels below 150 kPa. When reaching a steady state, the system was operated under saturated conditions. Some important parameters, including heat power, system resistance, and water level in the steam drum and water tank were investigated. The experimental results showed that the natural circulation system is feasible in removing the decay heat, even though some fluctuations may occur in the operation. The uneven temperature distribution in the water tank may be inevitable because convection occurs on the outside of the condensing tube besides boiling with decreasing the decay power. The instabilities in the natural circulation loop are sensitive to heat flux and system resistance rather than the water level in the steam drum and water tank. RELAP5 code shows reasonable results compared with experimental data.

Resistance of Terpenoids to Various Abiotic Stresses in Chamaecyparis obtusa

  • Min, Ji Yun;Park, Dong Jin;Yong, Seong Hyeon;Yang, Woo Hyeong;Seol, Yuwon;Choi, Eunji;Kim, Hak Gon;Choi, Myung Suk
    • Journal of agriculture & life science
    • /
    • v.53 no.3
    • /
    • pp.17-26
    • /
    • 2019
  • Chamaecyparis obtusa is one of the economical conifers planted in Korea due to its good quality timber and wood characteristics. Individuals of C. obtusa containing high terpenes (HT) and low terpenes (LT) were selected for by colorimetric method. The HT of C. obtusa was delayed in wilting against various abiotic stresses compared to the LT plants. The HT group exposed to UV did not significant influence the chlorophyll content, and the chlorophyll value was higher in the HT group than the LT group. Also, chilling treatment (5℃) did not significant influence on the chlorophyll content. However treatment at -4℃ showed relatively low chlorophyll content in the LT group than the HT group. Plants exposure to high temperature was not a difference between the HT and the LT group. However, treatment at 38℃ influenced the chlorophyll content that was increased exposure time-dependently. In salt treatments, chlorophyll in the HT group was lower at high concentrations (300 and 500 mM) of NaCl. However, chlorophyll content increased to slightly in treatment time-dependently, which is 6.7% to 40%. H2O2 treatment has been a negative effect on the chlorophyll content in the HT group. All concentration of H2O2 decreased the chlorophyll content of 5% to 35%. Plants containing high terpenoids were resisted against some abiotic stress such as salt and H2O2. Our results implied that terpenoids could cause various abiotic stress resistance. These results could be utilized for efficient management and biomass production during forest silvicultures.

The Effect of Nucleating Agent for Improving Heat Resistance Properties of L-Lactide Polymer (L-Lactide 폴리머의 내열성 향상을 위한 핵제의 효과 연구)

  • Sim, Jae-Ho;Kim, Soo-Jong;Shim, Jae-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5595-5600
    • /
    • 2012
  • This paper is to review and study about the crystallization nucleating agent to improve the heat-resistance properties of poly(lactic acid). Four sub-micron sized nucleating agents, metallic salts of 2,2'-methylene bis(4,6-di-tert-butylphenol), were prepared and used as a crystallization nucleating agent. Thermal and mechanical properties of polymer compounds were investigated by DSC, HDT and UTM. As the results, While the heat-resistance properties of the polymer compound samples were increased linearly with the contents of nucleating agent as well as their smaller size. Among them, the highest heat-resistance property of compound was observed with 2 wt% of MPZ2. HDT values of PL98Z2 compound was $116^{\circ}C$ at 0.455Mpa.

Studies on the Heat Resistance of Bacterial Amylase (part 1) -Effect of Calcium and Sodium Salts- (세균(細菌) amylase 의 내열성(耐熱性)에 관(關)한 연구(硏究) (제(第) 1 보(報)) -Calcium 및 Sodium 염(鹽)의 영향 (影響)에 대(對하)여-)

  • Park, Yoon-Choong;Lee, Han-Chang;Lee, Suk-Kun
    • Applied Biological Chemistry
    • /
    • v.9
    • /
    • pp.105-109
    • /
    • 1968
  • 1. The optimum temperature of amylase activity produced by Bacillus subtilis var. M-181 was $50^{\circ}C$, and its activity was lost by heating to $70^{\circ}C$, 10 minutes without addition of salts. 2. Addition of sodium salts effects for heat resistance of the amylase affected differently by kinds of the salt. Among organic sodium salts monosodium glutamate, sodium acetate as sodium propionate affected on heat resistance of the amylase relatively better effects. 3. Addition of 10mg of sodium sulfate per ml of enzyme solution $({D_{30}}^{40^{\circ}}\;1250/ml)$, showed maximum affect on the neat resistance. 4. Coexistence of calcium acetate and sodium acetate, affected on the hear resistance, remarkably.

  • PDF

Modification of polyamide reverse osmosis membranes seeking for better resistance to oxidizing agents

  • Silva, Lucinda F.;Michel, Ricardo C.;Borges, Cristiano P.
    • Membrane and Water Treatment
    • /
    • v.3 no.3
    • /
    • pp.169-179
    • /
    • 2012
  • One of the major limitations in the use of commercial aromatic polyamide thin film composite (TFC) reverse osmosis (RO) membranes is to maintain high performance over a long period of operation, due to the sensitivity of polyamide (PA) skin layer to oxidizing agents, such as chlorine, even at very low concentrations in feed water. This article reports surface modification of a commercial TFC RO membrane (BW30-Dow Filmtec) by covering it with a thin film of poly(vinyl alcohol) (PVA) crosslinked with glutaraldehyde (GA) to improve its resistance to chlorine. Crosslinking reaction was carried out at 25 and $40^{\circ}C$ by using PVA 1.0 wt.% solutions at different GA/PVA mass ratio, namely 0.0022, 0.0043 and 0.013. Water swelling measurements indicated a maximum crosslinking density for PVA films prepared at $40^{\circ}C$ and GA/PVA 0.0043. ATR-FTIR and TGA analysis confirmed the reaction between GA and PVA. SEM images of the original and modified membranes were used to evaluate the surface coating. Chlorine resistance of original and modified membranes was evaluated by exposing it to an oxidant solution (NaClO 300 mg/L, NaCl 2,000 mg/L, pH 9.5) and measuring water permeability and salt rejection during more than 100 h period. The surface modification effectively was demonstrated by increasing the chlorine resistance of PA commercial membrane from 1,000 ppm.h to more than 15.000 ppm.h.