• Title/Summary/Keyword: Salt diffusion

Search Result 172, Processing Time 0.024 seconds

Ranking and comparison of draw solutes in a forward osmosis process

  • Sudeeptha, G.;Thalla, Arun Kumar
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.411-421
    • /
    • 2017
  • Forward osmosis (FO) is an emerging technology which can possibly make the desalination process more cost and energy efficient. One of the major factors impeding its growth is the lack of an appropriate draw solute. The present study deals with the identification of potential draw solutes, and rank them. The comparison was carried out among ten draw solutes on the basis of four main parameters namely; water flux, reverse salt diffusion, flux recovery and cost. Each draw solute was given three 24 hour runs; corresponding to three different concentrations; and their flux and reverse salt diffusion values were calculated. A fresh membrane was used every time except for the fourth time which was the flux recovery experiment conducted for the lowest concentration and the change of flux and reverse salt diffusion values from the initial run was noted. The organic solutes inspected were urea and tartaric acid which showed appreciable values in other parameters viz. reverse salt diffusion, flux recovery and cost although they generated a lower flux. They ranked 5th and 8th respectively. All the experimented draw solutes were ranked based on their values corresponding to each of the four main parameters chosen for comparison and Ammonium sulfate was found to be the best draw solute.

The Solution of Upward Salt Diffusion in Floodeol Soil using Laplace Transformation (침수상태(湛水狀態)에서 토양(土壤) 염분(鹽分) 확산(擴散) 상승(上昇) 해석(解析)에 Laplace변환 이용)

  • Oh, Yong-Taeg;van der Molen, W.H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.3
    • /
    • pp.233-240
    • /
    • 1995
  • Fick's diffusion equation was transformed into algebraic subsidiary equation with its initial and boundary conditions through Laplace transformation, and the subsidiary equation was transformed back on the basis of Burington's table of inverse transformations so that it became the solution of Fick's equation. The initial and boundary condition was for upward diffusion of salts into flooding water of constant depth from uniform polder soil of infinite depth containing constant concentration of salt. The derived solution was tested through comparison for its conformability with other solutions of simpler initial and boundary conditions. The importance of shallow transplanting of rice seedlings and salt removing by growing rice was mentioned on the basis of very slow desalting rate by diffusion calculated from the derived solutions.

  • PDF

Change in rheological properties of radish during salting (염 절임동안에 일어나는 무조직의 유변학적인 변화)

  • Kim, Byung-Yong;Cho, Jae-Sun
    • Applied Biological Chemistry
    • /
    • v.35 no.5
    • /
    • pp.399-403
    • /
    • 1992
  • The amounts of salt diffused into radish after immersing in various concentrations of salt solution at different temperatures were measured and the changes of radish texture by the salt diffusion were estimatedwith the viscoelastic constants of a 3 element solid model determined by a stress relaxation test. While the amount of salt diffused throught radish was increased with increasing the salt concentration and soaking temperature, the istantaneous stress, equilibrium elastic solid and viscoelastic constants of radish were decreased. Also the degree of stress relaxation and equilibrium elastic solid approached the same or zero values, as salt concentration was further increased. Viscoelstic constants as well as salt diffusion were more influenced by lower salt concentration with increased temperatures.

  • PDF

Analysis for Chloride Penetration in Concrete under Deicing Agent using Multi Layer Diffusion (다층구조확산을 고려한 제설제에 노출된 콘크리트의 염화물 해석)

  • Seo, Ji-Seok;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.4
    • /
    • pp.114-122
    • /
    • 2016
  • Concrete is cost-benefit and high-durable construction material, however durability problem can be caused due to steel corrosion under chloride attack. Recently deicing salt has been widely spread in snowing season, which accelerates micro-cracks and scaling in surface concrete and the melted deicing salt causes corrosion in embedded steel. The previous governing equation of Fick's 2nd Law cannot evaluate the deteriorated surface concrete so that another technique is needed for the surface effect. This paper presents chloride penetration analysis technique for concrete subjected to deicing salt utilizing multi-layer diffusion model and time-dependent diffusion behavior. For the work, field investigation results of concrete pavement exposed deicing salt for 18 years are adopted. Through reverse analysis, deteriorated depth and increased diffusion coefficient in the depth are evaluated, which shows 12.5~15.0mm of deteriorated depth and increased diffusion coefficient by 2.0 times. The proposed technique can be effectively applied to concrete with two different diffusion coefficients considering enhanced or deteriorated surface conditions.

Monitoring the Degradation Process of Inconel 600 and its Aluminide Coatings under Molten Sulfate Film with Thermal Cycles by Electrochemical Measurements

  • Take, S.;Yoshinaga, S.;Yanagita, M.;Itoi, Y.
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.259-264
    • /
    • 2016
  • With a specially designed electrochemical cell, the changes in impedance behavior for Inconel 600 and aluminide diffusion coatings under molten sulfate film with thermal cycles (from $800^{\circ}C$ to $350^{\circ}C$) were monitored with electrochemical impedance measurements. It was found that corrosion resistance for both materials increased with lower temperatures. At the same time, the state of molten salt was also monitored successfully by measuring the changes in impedance at high frequency, which generally represents the resistance of molten salt itself. After two thermal cycles, both Inconel 600 and aluminide diffusion coatings showed excellent corrosion resistance. The results from SEM observation and EDS analysis correlated well with the results obtained by electrochemical impedance measurements. It is concluded that electrochemical impedance is very useful for monitoring the corrosion resistance of materials under molten salt film conditions even with thermal cycles.

Molecular dynamics study of ionic diffusion and the FLiNaK salt melt structure

  • A.Y. Galashev
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1324-1331
    • /
    • 2023
  • In the present work, we carried out a molecular dynamics study of the kinetic properties of the FLiNaK molten salt, as well as a detailed study of the structure of this salt melt. The high value of the self-diffusion coefficient of fluorine ions is due to the large number of Coulomb repulsions between the most numerous negative ions. The calculated values of shear viscosity are in good agreement with the experimental data, as well as with the reference data obtained on the basis of finding the most reliable data. The total and partial functions of the radial distribution are calculated. According to the statistical analysis, fluorine ions have the greatest numerical diversity in the environment of similar ions, and sodium ions with the lowest representation in FLiNaK, have the least such diversity. For the subsystem of fluorine ions, the rotational symmetry of the fifth order is the most pronounced. Some of the fluorine ions form linear chains consisting of three atoms, which are not formed for positive ions. The results of the work give an understanding of the behavior molten FLiNaK under operating conditions in a molten salt reactor and will find application in future studies of this molten salt.

A Study on Salt Diffusion Coefficient and Deviation by Strength of High-Strength Concrete (고강도 콘크리트 강도별 염분확산계수 및 편차에 관한 연구)

  • Park, Dong-Cheon;Seok, Won-Kyun;Jeon, Hyun-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.117-118
    • /
    • 2022
  • High-strength concrete is used for building durability on the coast. It is common to order and produce the concrete from several ready mixed concrete companies. The concrete in Busan was also commissioned by 12 ready mixed concrete companies. The compressive strength and salt diffusion coefficient were measured. The average value and deviation were analyzed.

  • PDF

The Experimental Study on the Durability of Concrete under Freezing & Thawing Action and Salt attack (염해와 동해를 받는 콘크리트의 내구성 평가실험)

  • Lee, Joan-Gu;Park, Kwang-Su;Cho, Young-Kwon;Kim, Meyong-Won;Kim, Kwan-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.213-216
    • /
    • 2005
  • Salt attack and freezing & thawing test, one of the combined deterioration tests was performed to explore the mechanism of concrete structure deterioration under marine environment. Simple submerging test was proceeded to draw out its diffusion factor with salt water at the same time. Some of the mechanisms were driven with using three types of cements and four kinds of salt water concentrations. $\circ$ TBC was more durable than OPC or SRC for freezing and thawing action $\circ$ The higher chloride concentration of salt water was, the faster relative dynamic elastic modulus decreased and the higher the loss of weight was. $\circ$ The diffusion factor of TBC was smaller than those of TBC or SRC at simple submergence of concrete specimens into salt water.

  • PDF

Analytical Model of Salt Budget in the Upper Indian River Lagoon, Florida USA

  • Kim, Young-Taeg
    • Ocean and Polar Research
    • /
    • v.26 no.1
    • /
    • pp.33-42
    • /
    • 2004
  • Effect of freshwater discharge on the long-term salt balance in the Northern and Central Indian River Lagoon (IRL) is successfully simulated by a new analytical solution to a water balance-based one-dimensional salt conservation equation. Sensitivity tests show that the salinity levels drop abruptly even during the dry season (November to May) due to the high surface runoff discharge caused by tropical storms, depressions, and passage of cold fronts. Increasing surface runoff and direct precipitation has risen by ten times, lowering the salinity level down to 12psu in the Northern Central zone, and to 17 psu in the Northern zone. However, the salinity level in the Southern Central zone has decreased to 25 psu. High sensitivity of the Northern Central zone to freshwater discharge can be partially explained by a rapid urbanization in this zone. During the dry season, less sensitivity of the Southern Central zone to the increased surface runoff is attributed to the proximity of the zone to the Sebastian Inlet and a strong diffusion condition possibly resulting from the seawater intrusion to the surficial aquifer at the Vero Beach. During the wet season, however, the whole study area is highly sensitive to freshwater discharge due to the weak diffusion conditions. High sensitivity of the IRL to the given diffusion conditions guarantees that the fresh-water release occurs during strong wind conditions, achieving both flood control in the drainage basin and a proper salinity regime in the IRL.

Chloride Diffusion of Concrete in Presence of De-icing Salt (제설제로부터 기인한 염화물의 콘크리트 확산특성)

  • Cheong, Hai-Moon;Ahn, Tas-Song
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.507-510
    • /
    • 2005
  • In winter, a large amount of de-icing salts such as $CaCl_2$, NaCl have been used on highways for road safety. They make concrete structures deteriorated. In this study, the chloride diffusion of concrete in presence of de-icing salt was investigated. The diffusion coefficient of chloride in presence of $CaCl_2$ solution was larger than in presence of NaCl solution. Therefore, it is necessary to assess chloride profile in presence of $CaCl_2$ by different way from the case in presence of NaCl solution or seawater.

  • PDF