• Title/Summary/Keyword: Salt Effect

Search Result 1,821, Processing Time 0.034 seconds

Effect of Phosphate and Citrate Salts on the Emulsion Stability of Soy Protein Isolate in the Presence of Calcium (칼슘 존재하에서 인산과 구연산업이 분리대두단백질의 유화 안정성에 미치는 영향)

  • Kim, Yeong-Suk;Yeom, Dong-Min;Hwang, Jae-Gwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.7 no.3
    • /
    • pp.177-182
    • /
    • 1994
  • The effect of phosphate salt (NafHP04) and sodium citrate on the emulsion stability of soy protein isolate (SPI) in the presence of calcium was investigated in terms of salt concentration and addition order. Both phosphate and citrate salts decreased the solubility of SPI despite their pH enhancing effects. Addition of calcium chloride (CaCl2) significantly decreased ES, which showed nearly negligible at more than 3 mM CaCl2 concentration. When Na2HP04 were added in the presence of 5 mM Cac12, 55 greatly increased up to 20mM concentration, above which however ES decreased. It was found that the addition order of Na2HPO4 and CaCl2 affected ES. The addition of phosphate and subsequent CaCl2 exhibited the higher 55 than the reverse order. In both cases, the overall ES profile was found to be nearly similar to the solubility profile of SPI, indicating the positive relationship between solubility and emulsion stability of SPI in the presence of calcium. Similar trend to the phosphate effect on ES was also observed for sodium citrate in the presence of calcium.

  • PDF

Effect of Alkali Metal Nitrates on the Ru/C-catalyzed Ring Hydrogenation of m-Xylylenediamine to 1,3-Cyclohexanebis(methylamine)

  • Kim, Young Jin;Lee, Jae Hyeok;Widyaya, Vania Tanda;Kim, Hoon Sik;Lee, Hyunjoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1117-1120
    • /
    • 2014
  • Ru/C-catalyzed hydrogenation of m-xylylene diamine into 1,3-cyclohexanebis(methylamine) was greatly accelerated by the presence of $LiNO_3$, $NaNO_2$, or $NaNO_3$. It was found that the effect of the nitrate salt was significantly affected by the size of cation. The promoting effect of the nitrate salt increased with the decrease of the cation size: $LiNO_3$ ~ $NaNO_2$ > $KNO_3$ > $CsNO_3$ >> [1-butyl-3-methylimidazolium]$NO_3$. XRD analysis of the recovered catalysts after the hydrogenation reactions showed that $LiNO_3$ and $NaNO_2$ were completely transformed into LiOH and NaOH, respectively, along with the evolution of $NH_3$, while $KNO_3$ and $CsNO_3$ remained unchanged.

Effect of Decyl Alcohol EC on Tobacco Sucker Control (데실알콜유제의 담배 곁순억제호과)

  • 김기황;정훈채;김용연
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.26 no.1
    • /
    • pp.7-12
    • /
    • 2004
  • Effect of Decyl Alcohol Emulsifiable Concentrate on sucker control and phytotoxicity to tobacco plants were tested on flue-cured tobacco and burley tobacco. There were no significant differences of sucker inhibition effect between Decyl Alcohol EC and Choline Salt of Maleic Hydrazide Soluble Concentrate(control chemical). Tobacco plants applied with Decyl Alcohol EC showed no visible symptoms of phytotoxicity and no significant differences of number of leaves, leaf length, leaf width, and stalkt height. Yields increased considerably with no difference from ones of plants treated with control chemical.

Effect of PEO of PS-P2VP photonic gel films

  • Shin, Sung-Eui;Kim, Su-Young;Shin, Dong-Myung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1405-1407
    • /
    • 2009
  • We prepared polystyrene-b-poly(2-vinyl pyridine) (PSb-P2VP) lamellar films which is hydrophobic block-hydrophilic polyelectrolyte block polymer have 57 kg/mol-b-57 kg/mol. The result of UV-visible absorption spectra supported that effect of poly(ethylene oxide) on the band gap tuning of PS-P2VP photonic gel like salt effect.

  • PDF

Studies on Heat Sensitivity of Egg Albumen II. Effects of pH and/or the Addition of Metal ions on Heat Sensitivity of Egg Albumen (난백의 숙감수성에 관한 연구 II. 금속염의 첨가와 pH가 난백의 열감수성에 미치는 영향)

  • 유익종;이성기;김영붕
    • Korean Journal of Poultry Science
    • /
    • v.16 no.1
    • /
    • pp.17-22
    • /
    • 1989
  • In order to dull heat sensitivity of egg albumen, metal ions (aluminium, ferric, ferrous, copper) were added and functional properties or egg albumen were determined before and after heat treatment at $60^{\circ}C$ for 5 minutes. Effect of pH on heat sensitivity of aluminium salt added egg albumen was also determined. Addition of metal ions increased turbidity of egg albumen before and after the heat treatment. Changes of the turbidity were minimized by addition of aluminium salt. The foaming power was markedly increased by addition of ferric salt before the heat treatment and increased by addition of aluminium, ferric and copper salt after the heat treatment. Before the heat treatment the foam was stable by addition of ferric and ferrous salt but after the heat treatment it was stable by addition of aluminium and ferric salt. The turbidity and foaming property of the egg albumen with aluminium salt were not largely changed after the heat treatment at pH range 7 to 8.5. Over pH 9 the turbidity and foaming power were not decreased, but the foam stability was increased before and after the heat treatment. Salmonella typhimurium ATCC 14028 (10$^{6}$ cells/$m\ell$) inoculated in egg albumen at pH range 7 to 8.5 was destructed by the heat treatment.

  • PDF

Halotolerant Plant Growth Promoting Bacteria Mediated Salinity Stress Amelioration in Plants

  • Shin, Wansik;Siddikee, Md. Ashaduzzaman;Joe, Manoharan Melvin;Benson, Abitha;Kim, Kiyoon;Selvakumar, Gopal;Kang, Yeongyeong;Jeon, Seonyoung;Samaddar, Sandipan;Chatterjee, Poulami;Walitang, Denver;Chanratana, Mak;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.355-367
    • /
    • 2016
  • Soil salinization refers to the buildup of salts in soil to a level toxic to plants. The major factors that contribute to soil salinity are the quality, the amount and the type of irrigation water used. The presented review discusses the different sources and causes of soil salinity. The effect of soil salinity on biological processes of plants is also discussed in detail. This is followed by a debate on the influence of salt on the nutrient uptake and growth of plants. Salinity decreases the soil osmotic potential and hinders water uptake by the plants. Soil salinity affects the plants K uptake, which plays a critical role in plant metabolism due to the high concentration of soluble sodium ($Na^+$) ions. Visual symptoms that appear in the plants as a result of salinity include stunted plant growth, marginal leaf necrosis and fruit distortions. Different strategies to ameliorate salt stress globally include breeding of salt tolerant cultivars, irrigation to leach excessive salt to improve soil physical and chemical properties. As part of an ecofriendly means to alleviate salt stress and an increasing considerable attention on this area, the review then focuses on the different plant growth promoting bacteria (PGPB) mediated mechanisms with a special emphasis on ACC deaminase producing bacteria. The various strategies adopted by PGPB to alleviate various stresses in plants include the production of different osmolytes, stress related phytohormones and production of molecules related to stress signaling such as bacterial 1-aminocyclopropane-1-carboxylate (ACC) derivatives. The use of PGPB with ACC deaminase producing trait could be effective in promoting plant growth in agricultural areas affected by different stresses including salt stress. Finally, the review ends with a discussion on the various PGPB activities and the potentiality of facultative halophilic/halotolerant PGPB in alleviating salt stress.

The Threshold of 0.5% Salt-water Taste and Risk of Stomach Cancer (0.5% 소금물에 대한 역치와 위암발생의 위험도)

  • Ohrr, Hee-Chul;Lee, Kang-Hee;Yi, Sang-Wook
    • Journal of agricultural medicine and community health
    • /
    • v.25 no.2
    • /
    • pp.293-302
    • /
    • 2000
  • The relationship between sodium intake and stomach cancer risk has been studied much in Japan but a great portions still remain controversial. There has been few studies on relationship between sodium intake and stomach cancer in Korea. The goal of this nested case-control study is to investigate the association between sodium intake and stomach cancer risk in a rural county of Korea We estimated sodium intake indirectly by the threshold of salt-water taste of patients. This study was based on both of the data from 'Kangwha Cohort Study' which had been conducted from March 1985 and 'Kangwha Community Cancer Registry' which had been launched on July in 1982 by the College of Medicine, Department of Preventive Medicine. Yonsei University. A total of 145 patients who developed stomach cancer in Kangwha County were initially recruited as the case group. We tried to get two community-controls per stomach cancer case by matching age and gender. Finally we got information from 90 cases and 146 controls about the threshold of the salt taste and preference of salty food and so on. Some 79% of the information about ease group came from proxy respondents and 56% among controls. Risk ratios of developing stomach cancer adjusted for smoking, body mass index and self-stated health level were estimated. No statistically significant association between the threshold of salt taste and stomach cancer risk found in this study. We recommend some further studies utilizing urinary salt excretion, diet record method for better estimating of salt intake with a paticular emphasis on interaction effect between salty and spicy food in hospital-based case-control study designs.

  • PDF

Optimal Temperature and Salt Concentration for Low Salt Dongchimi Juice Preparation (저염 동치미 쥬스의 제조를 위한 최적 발효온도 및 소금농도)

  • 엄대현;장학길;김종군;김우정
    • Korean journal of food and cookery science
    • /
    • v.13 no.5
    • /
    • pp.578-584
    • /
    • 1997
  • Fermentation temperature and salt concentration of Dongchimi were studied for the development of low salt Dongchimi juice. The juice was prepared by soaking the radish in brine solution of 0.3∼3.0% and fermented at the temperature range of 10∼30$^{\circ}C$. The fermentation proceeded faster at higher temperature. However, the salt concentration effect was dependent on the temperature. Fermentation in 3.0% NaCl solution resulted the fastest reach to pH 3.8 followed by 0.5% NaCl at 10 and 20$^{\circ}C$, while higher NaCl concentration caused a decrease in the fermentation rate at 30$^{\circ}C$. Comparison of flavor of the juice of pH 3.9 showed that fresh sourness was high in the juice prepared at 20$^{\circ}C$ and in 0.5% NaCl. The preference test also showed the juice of pH 3.8∼4.0 fermented in 0.5% NaCl at 20$^{\circ}C$ to be the most preferable one. The salt concentration lower than 0.5% at 20$^{\circ}C$ resulted in faster fermentation and high values in turbidity. However 0.5% NaCl was scored high in flavor acceptability.

  • PDF

A Study on Relationship between Corrosion Characteristics and Salt Concentration of Anti-corrosive Paint (방청도료의 부식특성과 염분농도의 상관관계에 관한 연구)

  • Moon, Kyung-Man;Lee, Myeong-Woo;Lee, Myeong-Hoon;Kim, Hye-Min;Baek, Tae-Sil
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.2
    • /
    • pp.95-103
    • /
    • 2018
  • Recently, many types of constructional steels have been often exposed to under severe corrosive environments due to acid rain with increasing environmental contamination. In order to inhibit their corrosion in severe corrosive environments, a painting method has been widely applied to numerous constructional steels of land as well as marine. Therefore, development of paint having a good quality of corrosion resistance is considered to be very important. In this study, four types of anti-corrosive paints (AP: Phenol epoxy, AC: Ceramic epoxy, AT: Coal tar epoxy, AH: High solid epoxy) were coated to the specimens, and then, were immerged in various salt solutions (0.1, 0.3, 3, 6, 9 and 15% NaCl solutions) for 11 days. And, the corrosion resistance of these samples by effect of osmotic pressure with salt concentration was investigated with electrochemical methods such as measurement of corrosion potential, impedance and corrosion current density. The corrosion current densities of all samples (AC, AT and AH) submerged in 3% NaCl solution exhibited the smallest values compared to other salt solutions. However, in the case of lower values of salt solutions than 3% NaCl solution, the corrosion current density increased again because it makes easier for water, dissolved oxygen and chloride ion etc. to invade toward inner side of coating film due to increasing of the osmotic pressure than 3% NaCl solution, but in the case of higher values of salt solutions than 3% NaCl solution, the coating film is easily deteriorated due to high concentration of chloride ion rather than the osmotic pressure, which resulted in increasing the corrosion current density. In particular, the AC sample indicated the best corrosion resistance in 6% NaCl solution compared to other samples. Consequently, it is considered that the corrosion mechanism of the coated steel plate is completely different from bare steel plate, and the corrosion resistance of coating film by osmotic pressure and chloride ion depend on various types of epoxy of paint in NaCl solution.

Effect of Irrigation Water Salinization on Salt Accumulation of Plastic Film House Soil around Sumjin River Estuary (섬진강 하구 관개용수 염화에 의한 시설재배단지 토양의 염류집적 심화)

  • Lee, Seul-Bi;Hong, Chang-Oh;Oh, Ju-Hwan;Gutierrez, Jessie;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.349-355
    • /
    • 2008
  • The causes of salt accumulation in soils of plastic film houses nearby Sumjin river estuary in Mokdo-ri($127^{\circ}46'E\;35^{\circ}1'N$), Hadong, Gyeongnam, Korea were investigated in 2006. With chemical properties soils and water analyzed and fertilization status monitored, the study showed that mean salt concentration of soil was much higher at EC $4.3\;dS\;m^{-1}$ than the Korean average (EC $2.9\;dS\;m^{-1}$) in 2000s for plastic film house's soil with exchangeable Na $0.8\;cmol^+\;kg^{-1}$ and water-soluble Cl $232\;mg\;kg^{-1}$, and then might result to salt damage in sensitive crop plants. Salt concentration of ground water used as main irrigation water source contained very high EC with corresponding value of $2.6\;dS\;m^{-1}$. Particularly, increase of EC value was directly proportional with the increased pumping of ground water used as a water-covering system in order to protect the temperature inside plastic film houses from the early winter season. High Na and Cl portion of ions in water might had contributed to the specific ion damage in the crops. Secondly, heavy inputs of chemicals and composts significantly increased the accumulated salts in soil. Conclusively, salt accumulation might had been accelerated by use of salted-groundwater irrigation and heavy fertilization rate. To minimize this problem, ensuring good quality of irrigation water is essential as well as reducing fertilization level.