• Title/Summary/Keyword: Salt Effect

Search Result 1,821, Processing Time 0.036 seconds

Effect of Curing Time on the Physicochemical and Sensory Properties of Beef Jerky Replaced Salt with Soy Sauce, Red Pepper Paste and Soybean Paste

  • Lim, H.J.;Kim, G.D.;Jung, E.Y.;Seo, H.W.;Joo, S.T.;Jin, S.K.;Yang, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.8
    • /
    • pp.1174-1180
    • /
    • 2014
  • This study was done to investigate the quality properties of beef jerky with soy sauce, red pepper paste, and soybean paste replacing salt. Sliced beef samples were cured in salt (control), soy sauce, red pepper paste, and soybean paste for 24 or 48 h and then dried at $70^{\circ}C$ for 8 h. Treatments showed higher final moisture content and lower $Na^+$ concentration than the control after drying for 8 h. The lightness and shear force values were lower in all treatment samples than in the control during 48 h of curing time. In particular, lower lipid oxidation was found in the jerky cured with red pepper paste than in the control. Sensory evaluation showed that color, flavor, and tenderness of jerky samples were improved by replacing salt with soy sauce, red pepper paste and soybean paste, and higher likeability scores of the beef jerky were obtained among those treatments after 48 h of curing time.

Development and Verification of AMBIKIN2D, A Two Dimensional Kinetics Code for Fluid Fuel Reactors (유동핵연료원자로를 위한 이차원 동특성 코드 AMBIKIN2D 개발 및 검증)

  • Lee, Young-Joon;Oh, See-Kee
    • Journal of Energy Engineering
    • /
    • v.17 no.1
    • /
    • pp.23-30
    • /
    • 2008
  • The neutron kinetic analysis methods for the molten-salt reactors are quite different from those for conventional solid-fuel reactors, which do not take into account the flowing-fuel-induced neutronics effects. Therefore, for dynamics and safety analyses of the molten-salt reactor systems, the conventional kinetics codes would not be appropriate to accurately predict its transient behaviors. A point-kinetics with flowing- fuel model has been used to assess the fluid-fuel reactor system safety, but recognized as not to be sufficient to simulate spatial distributions of delayed-neutron precursors and neutron populations during transients for given detail reactor models. In order to meet this requirement, AMBIKIND, a 2-group, 2-dimensional neutron kinetics code suitable for the molten-salt reactor systems was developed. This paper explains the code's theoretical and numerical descriptions and, as a part of its verification, includes some simulation results of MSRE stability experiments. Even though the present reactor model does not include the recirculation effect of the fuel-salt through the reactor system, the AMBIKIN2D code should be able to predict the power and phase shift at various power levels and reactivity insertions with better accuracy.

Effect of NaCl Concentration and Cooking Temperature on the Color and Pigment Characteristics of Presalted Ground Chicken Breasts

  • Bae, Su Min;Cho, Min Guk;Hong, Gi Taek;Jeong, Jong Youn
    • Food Science of Animal Resources
    • /
    • v.38 no.2
    • /
    • pp.417-430
    • /
    • 2018
  • This study was conducted to determine the effects of NaCl concentration and cooking temperature on the color and pigment characteristics of presalted ground chicken breasts. Four treatments with different salt concentrations (0%, 1%, 2%, and 3%) were prepared and stored for 7 d prior to cooking. Each sample was cooked to four endpoint temperatures ($70^{\circ}C$, $75^{\circ}C$, $80^{\circ}C$, and $85^{\circ}C$). The salt concentration affected the color and pigment properties of the cooked ground chicken breasts. As the salt concentration increased, the cooking yield and residual nitrite content also increased. However, the samples with 1%, 2%, and 3% NaCl showed similar nitrosyl hemochrome and total pigment contents. Among the products containing salt, the samples with 3% NaCl showed the lowest percentage myoglobin denaturation (PMD) and the lowest CIE $a^*$ values. The cooking temperature had limited effects on the pigment properties of cooked ground chicken breasts. The oxidation-reduction potential and residual nitrite contents increased with cooking temperature, while the PMD, nitrosyl hemochrome, total pigment contents and CIE $a^*$ values were similar in the samples cooked at different temperatures. These results indicated that the addition of up to 2% salt to ground chicken breasts and storage for 7 d could cause the pink color defect of cooked products. However, the addition of 3% NaCl could reduce the redness of the cooked products.

Analysis for Chloride Penetration in Concrete under Deicing Agent using Multi Layer Diffusion (다층구조확산을 고려한 제설제에 노출된 콘크리트의 염화물 해석)

  • Seo, Ji-Seok;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.4
    • /
    • pp.114-122
    • /
    • 2016
  • Concrete is cost-benefit and high-durable construction material, however durability problem can be caused due to steel corrosion under chloride attack. Recently deicing salt has been widely spread in snowing season, which accelerates micro-cracks and scaling in surface concrete and the melted deicing salt causes corrosion in embedded steel. The previous governing equation of Fick's 2nd Law cannot evaluate the deteriorated surface concrete so that another technique is needed for the surface effect. This paper presents chloride penetration analysis technique for concrete subjected to deicing salt utilizing multi-layer diffusion model and time-dependent diffusion behavior. For the work, field investigation results of concrete pavement exposed deicing salt for 18 years are adopted. Through reverse analysis, deteriorated depth and increased diffusion coefficient in the depth are evaluated, which shows 12.5~15.0mm of deteriorated depth and increased diffusion coefficient by 2.0 times. The proposed technique can be effectively applied to concrete with two different diffusion coefficients considering enhanced or deteriorated surface conditions.

Spatio-temporal Variation in the Benthic Environmental Conditions and Salt Marsh Vegetation in Donggeomdo, Incheon, Korea (강화 동검도 염습지 식생의 분포와 저서환경조건의 시.공간적 변화)

  • Lee Hyung-Gon;Park Heung-Sik;Hong Jae-Sang;Je Jong-Geel;Lee Jae-Hac
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.spc1
    • /
    • pp.180-188
    • /
    • 2006
  • We examined the effect of salt marsh vegetation on the benthic environment in macro-tidal flats at Donggeomdo, Ganghwa, on the west coast of Korea. Nine stations were established along a transect across the tidal flats, including salt marsh, and field sampling was conducted monthly from July 1997 to June 1998. During the study period, environmental parameters fluctuated as follows: salinity, 15.0 to 28.2 psu, exposure time, 613 to 702 hr/m, inundation time, 28 to 117 hr/m, sediment organic carbon, 0.71 to 1.34%, nitrogen, 0.07 to 0.16%, sulfur from 0.07 to 0.22%, mean grain size from 6.3 to $6.9{\phi}$, water content from 19.4 to 44.4%, water temperature from 4.4 to $20.4^{\circ}C$ and temperature of the surface sediments, 2.7 to $31.1^{\circ}C$, in total, seven halophyte species were sampled and found to be vertically distributed across the tidal levels. Carer scabrifolia, Suaeda maritima, Limonium tetragonum and Phragmites communis dominated the upper zone of the salt marsh, Juncus haenkei, Triglochin maritimum and P. communis dominated the middle zone, and Suaeda japonica predominated in the lower area. Principal component analysis (PCA) and non-metric multi-dimensional scaling revealed that the zonation of halophytes was related to environmental variables such as salinity and exposure time. The halophyte communities were likely related to the organic content of the surface sediment.

Salt treatment for recovery of the mud loach, Misgurnus mizolepis from transport stress

  • Yu, Jin-Ha;Kim, Dae-Hyun;Han, Jung-Jo;Park, Sung-Woo
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.4
    • /
    • pp.215-221
    • /
    • 2016
  • Due to the shortage of the fingerling/juvenile mud loach, Misgurnus mizolepis in Korea, these fish have been imported from China. However, the mortality rate during and after their transportation is very high. In this study, we examined various physiological and histological parameters to evaluate the effect of salt treatment on the survival and recovery of mud loaches in holding farms during the quarantine process. Glucose, osmolality, $Na^+$, $Cl^-$, and histological changes were assessed for three different salinities. Non-treated fish (control 0.0%) exhibited lower levels of osmolality, and $Na^+$ and $Cl^-$ concentrations compared with those kept in solar salt solution (0.5% and 1.0%). Glucose levels in control fish were higher than those in fish exposed to 0.5% and 1.0% solar salt solution. Histologically, control fish showed thinner epidermis of skin, branchial hyperplasia and lamellar fusion with an abundance of eosinophilic granule cell-like cells. After solar salt solution treatment, damaged gill structures in the fish almost recovered within 5 days. The present study demonstrates that mud loaches transported from China suffer from skin and gill damage and physiological dysfunction which may increase the mortality and morbidity. Moreover, saline treatment might alleviate the stress responses and ionic/osmotic imbalances, and help heal gill damage.

Effect of Temperature and Salt Concentration on Kimchi Fermentation (김치발효에 미치는 온도 및 식염농도의 영향)

  • Mheen, Tae-Ick;Kwon, Tai-Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.443-450
    • /
    • 1984
  • Chemical and microbial changes during Kimchi (a group of Korean seasoned pickles) fermentation were carried out at various temperatures and salt concentrations. The time reaching optimum ripening of Kimchi varied depending upon fermentation temperature and salt concentration. At high temperature and low salt content Kimchi fermentation was faster than at low temperature and high salt content. The ratio of volatile to non-volatile acids reached its maximum at the optimum ripening time of Kimchi and decreased thereafter. Leu. mesenteroids, Lac. brevis, Lac. plantarum, Ped. cerevisiae, Str. faecalis and low acid producing Lactobacilli were isolated from Kimchi samples. However, the main microorganism responsible for Kimchi fermentation was Leu. mesenteroides and Lac. plantarum was the main acidifying organism. Total viable count increased rapidly in the beginning of fermentation and reached its maximum number at optimum ripening time and then decreased slowly as the acidity of Kimchi increased. While the total aerobic bacteria and fungi decreased during Kimchi fermentation, the yeast increased significantly at lower temperature.

  • PDF

Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene

  • Kumar, Vinay;Shriram, Varsha;Kishor, P.B. Kavi;Jawali, Narendra;Shitole, M.G.
    • Plant Biotechnology Reports
    • /
    • v.4 no.1
    • /
    • pp.37-48
    • /
    • 2010
  • [ ${\Delta}^1$ ]pyrroline-5-carboxylate synthetase (P5CS) is a proline biosynthetic pathway enzyme and is known for conferring enhanced salt and drought stress in transgenics carrying this gene in a variety of plant species; however, the wild-type P5CS is subjected to feedback control. Therefore, in the present study, we used a mutagenized version of this osmoregulatory gene-P5CSF129A, which is not subjected to feedback control, for producing transgenic indica rice plants of cultivar Karjat-3 via Agrobacterium tumefaciens. We have used two types of explants for this purpose, namely mature embryo-derived callus and shoot apices. Various parameters for transformation were optimized including antibiotic concentration for selection, duration of cocultivation, addition of phenolic compound, and bacterial culture density. The resultant primary transgenic plants showed more enhanced proline accumulation than their non-transformed counterparts. This proline level was particularly enhanced in the transgenic plants of next generation ($T_1$) under 150 mM NaCl stress. The higher proline level shown by transgenic plants was associated with better biomass production and growth performance under salt stress and lower extent of lipid peroxidation, indicating that overproduction of proline may have a role in counteracting the negative effect of salt stress and higher maintenance of cellular integrity and basic physiological processes under stress.

Studies on Rheological Characterizaiton of Rhamsan Gum Produced by Alcaligenes -comparative studies on rheological Characterization of Rhamsan and Xanthangum- (Alcaligenes에 의해서 생성된 Rhamsan Gum의 리올리지 특성에 관한 연구)

  • Lee, Im-Seon;Kim, Mi-Ok;Koo, Sung-Ja
    • Korean journal of food and cookery science
    • /
    • v.8 no.2
    • /
    • pp.155-163
    • /
    • 1992
  • Rhamsan gum produced by Alcaligenes was rheologically characterized, and compared to that of xanthan gum. The rheological properties were derermined from the change in the value of intrinsic viscosity with pH and salt concentration. at the range of pH 2~11 and salt concentration of 0~1.0 M KCl, the intrinsic viscosties of rhanisan gum were in the range of 8.2 to 36.2 dl/g and those of xanthan gum 8.19 to 44 dl/g. In the absence of salt, the intrinsic viscosity of rhamsan gum and Xanthan gum increased as the pH of solution increased up to neutral pH, and then decreased at alkaline pH. The intrinisc viscosities of rhamsan and anthan gum were not affec6ted by the increment of salt concentration. the chain stiffness paramenter for the rhamsan gum was 0.016. The overlap paramoeters of rhamsan and xanthan gum were 0.025 and 0.022 g/dl, respectively. rhamsan and xanthan gum were shear rate dependent or pseudoplastic. The yield stress of rhamsan gum increased slightly, but the shear index decreased as the concentration increased. The apparent viscosityes of rhamsan and xanthan gum decreased as the temperature increased. The salt effect of divalent cations (calcium, magnesium) was lower than monovalent cations (sodium, potassium).

  • PDF

Effect of Salt Concentration on the Glass Transition Temperature and Ionic Conductivity of Poly(ethylene glycol)-Polyurethane/$LiClO_4$ Complexes

  • Huh, Pil-Ho;Park, Myung-Geun;Jo, Nam-Ju;Lee, Jin-Kook;Lee, Jang-Oo;Wongkang Yang
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.422-426
    • /
    • 2004
  • Solid polymer electrolytes based on poly(ethylene glycol)-polyurethane (PEG-PU) complexed with LiClO$_4$ salt have been prepared by the solvent casting method. A PEG-PU material (PEG:4,4'-diphenylmethane diisocyanate: l,4-butanediol = 1:2:1) was synthesized through a typical two-step condensation reaction. We investigated the effects of the salt concentration on the ionic conductivity ($\sigma$) and the glass transition temperature (T$_{g}$ ) of the complex electrolytes by using alternating current impedance spectroscopy, differential scanning calorimetry, and dynamic mechanical thermal analysis. The measured values of both $\sigma$ and T$_{g}$ exhibited similar tendencies in that they had maxima within the range studied, probably because of two opposite effects, i.e., the increased number of carrier ions and the decreased chain mobility (or increased T$_{g}$ ) caused by the increase in the salt concentration. The highest conductivity, on the order of 2.43 ${\times}$ 10$^{6}$ S$cm^{-1}$ /, was obtained at an [O]/[Li$^{+}$] ratio of ca. 16 (0.92 ㏖ salt per kg of matrix polymer).