• Title/Summary/Keyword: Salt Attack

Search Result 108, Processing Time 0.023 seconds

A de-identification technique using generalization and insert a salt data (일반화와 데이터 삽입을 이용한 익명화 처리 기법)

  • Park, Jun-Bum;Cho, Jin-Man;Choi, Dae-Seon;Jin, Seung-Hun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.351-353
    • /
    • 2015
  • 공공정보 공유 및 개방, 소셜네트워크서비스의 활성화 그리고 사용자 간의 공유 데이터 증가 등의 이유로 인터넷상에 노출되는 사용자의 개인 정보가 증가하고 있다. 인터넷상에 노출된 사용자들의 개인정보들은 연결공격(linkage attack), 배경지식 공격(background attack)으로 프라이버시를 침해할 수 있다. 이를 막기 위해 관계형 데이터베이스에서는 대표적으로 k-익명성(k-anonymity)을 시작으로 l-다양성(l-diversity), t-밀집성(t-closeness)이라는 익명화 모델이 제안되었으며 계속해서 익명화 알고리즘의 성능은 개선되고 있다. 하지만 k-익명성, l-다양성, t-밀집성 모델의 조건을 만족하기 위해서는 준식별자(quasi-identifier)를 일반화(generalization)처리 해주어야 하는데 이 과정에서 준식별자의 가치를 손실된다는 단점이 있다. 본 논문에서 준식별자의 정보 손실을 최소화하기 위해 k-익명성 모델을 만족시키는 과정에서 일반화와 데이터를 삽입을 사용하는 익명화 처리하는 방법을 제안한다.

A Compound Deterioration Assessment of Concrete Subjected In Freezing-Thawing and Chloride Attack (동결융해와 염해의 복합작용을 받는 콘크리트의 내구성능 저하 평가)

  • 고경택;김도겸;김성욱;조명석;송영철
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.397-405
    • /
    • 2001
  • In clod weather regions, a strong seasonal wind brings sea salts to the land. In addition to it, recently, the spreading amount of deicing salts has increased numerously for purpose of removing snow and ice. Thus the salts environment around concrete structures becomes so severe that various damages of concrete due to applied salts will be brought up. Much of countries such as America, Europe etc. is carried out study for effects of deicing salts on concrete. However, there are not test methods for deterioration of concrete subjected to both freezing-thawing and chloride in Korea. In this study, we carried out test for the compound deterioration subjected to both freezing-thawing and chloride attack, to investigate the effects of sodium chloride on the deterioration of concrete. The test was performed to investigate the effects of cement type, strength and air content on the scaling deterioration of concrete. As a result, the scaling deterioration was accelerated in the presence of salts. And the resistance to scaling was strongly influenced by the type of cement, the strength and air content of concrete.

Robust Anti Reverse Engineering Technique for Protecting Android Applications using the AES Algorithm (AES 알고리즘을 사용하여 안드로이드 어플리케이션을 보호하기 위한 견고한 역공학 방지기법)

  • Kim, JungHyun;Lee, Kang Seung
    • Journal of KIISE
    • /
    • v.42 no.9
    • /
    • pp.1100-1108
    • /
    • 2015
  • Classes.dex, which is the executable file for android operation system, has Java bite code format, so that anyone can analyze and modify its source codes by using reverse engineering. Due to this characteristic, many android applications using classes.dex as executable file have been illegally copied and distributed, causing damage to the developers and software industry. To tackle such ill-intended behavior, this paper proposes a technique to encrypt classes.dex file using an AES(Advanced Encryption Standard) encryption algorithm and decrypts the applications encrypted in such a manner in order to prevent reverse engineering of the applications. To reinforce the file against reverse engineering attack, hash values that are obtained from substituting a hash equation through the combination of salt values, are used for the keys for encrypting and decrypting classes.dex. The experiments demonstrated that the proposed technique is effective in preventing the illegal duplication of classes.dex-based android applications and reverse engineering attack. As a result, the proposed technique can protect the source of an application and also prevent the spreading of malicious codes due to repackaging attack.

An Experimental Study on the Improvement of Early Strength and Chloride Attack Resistance for Marine Concrete (해양용콘크리트의 초기강도 및 내염해 저항성 향상에 관한 실험적 연구)

  • Lee, Keon-Ho;Kim, Jong-Back;Bae, Jun-Young;Seo, Shin-Seok;Jo, Sung-Hyun;Roh, Hyeon-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.661-664
    • /
    • 2008
  • The structure which is located in special surroundings like ocean-environment is physically and chemically eroded by seawater or salt damage, and then concrete-structure becomes deteriorated by iron corrosion and swelling pressure which leads to remarkably decline durability due to cracks and exploitation. As a measure against salt damage, it is actively being examined to use the blended cement that controls salt damage and fix chloride in the process of hydration. In this study, therefore, to examine the property of marine concrete added admixture, marine concrete is manufactured by adding high-strength admixture(omega2000) by 0, 5, 10, and 15% to low heat-blended cement. Then it shows that the compressive strength of manufactured marine cement tends to increase and chloride penetration resistance improves.

  • PDF

Effect of Filler and Additive on Performance of Cycloalipatic Epoxy Used for Outdoor Insulators (Cycloaliphatic계 에폭시 절연재료의 옥외성능에 미치는 충전재 및 첨가물의 영향)

  • 연복희;박충렬;허창수;심대섭
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.4
    • /
    • pp.30-37
    • /
    • 2002
  • This paper reports on the results of weathering test, tracking test and salt-fog test of various kinds of cycloaliphatic epoxy systems. UV irradiation dramatically induced the loss of surface hydrophobicity due to the chain scission attack at the surface under UV irradiation. It could be seen that samples containing an UV absorbent/antioxidant and a silicone oil additive have a good performance in weathering test, while ATH(alumina tri-hydrate) filled ones have high resistance against tracking failure than others. Under salt fog chamber test, specimens mixed with silicone oil are able to suppress leakage current development. It was thought that silicone oil mixed into cycloaliphatic epoxy system could lead to lower the surface energy and to retain hydrophobic properties for a long time, which are desirable for outdoor use.

Durability Evaluation of High-Performance, Low-Heat Self-Compacting Concrete for Foundation of Tall Buildings (초고층 건축물 매트 기초용 고성능 콘크리트 내구성 평가)

  • Kim, Young-Bong;Park, Dong-Cheon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.5
    • /
    • pp.425-430
    • /
    • 2022
  • Concrete used for the foundation of high-rise buildings is often placed through in an integrated pouring to ensure construction efficiency and quality. However, if concrete is placed integrally, there is a high risk of temperature cracking during the hydration reaction, and it is necessary to determine the optimal mixing design of high-performance, high-durable concrete through the replacement of the admixture. In this study, experiments on salt damage, carbonation, and sulfate were conducted on the specimen manufactured from the optimal high-performance low-heating concrete combination determined in the author's previous study. The resistance of the cement matrix to chlorine ion diffusion coefficient, carbonation coefficient, and sulfate was quantitatively evaluated. In the terms of compression strength, it was measured as 141% compared to the structural design standard of KCI at 91 days. Excellent durability was expressed in carbonation and chlorine ion diffusivity performance evaluation. In particular, the chlorine ion diffusion coefficient, which should be considered the most strictly in the marine environment, was measured at a value of 4.09×E-12m2/y(1.2898×E-10m2/s), and is expected to be used as a material property value in salt damage durability analysis. These results confirmed that the latent hydroponics were due to mixing of the admixture and high resistance was due to the pozzolane reaction.

A investigation study on the site analysis damaged by disaster and deterioration reason of school facilities (학교시설물의 노후화 현상 및 지진.화재.풍수해의 피해에 대한 사례 조사연구)

  • Yun, Yoo-Hyuk;Shin, Yi-Chul;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.21-26
    • /
    • 2008
  • We investigate the various factors such as earthquake, fire, flood and deterioration factors such as carbonation, salt attack, freezing thawing, alkali-aggregate reaction effects on the school facilities. As the consequence of this study we can see that there are very relative relation between deterioration factors and disaster factors. It is the aim of this study to investigate the site analysis damaged by disaster and deterioration factors of school facilities.

  • PDF

A Study on the Development of Corrosion Prediction System of Reinforcing Bars in Sea-shore Structure (해양 구조물의 철근부식 예측기법 개발에 관한 연구)

  • 박승범;김도겸
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.89-100
    • /
    • 1999
  • Service life of concrete structures that are exposed to the environmental attack is largely influenced by the corrosion of reinforcing bare due to the chloride contamination. Chloride ions penetrate continuously into concrete from the environment, and chloride diffusion velocity is governed by a mechanical steady stage. In this study, a method is developed to predict corrosion initiation of reinforcing bars in the sea-shore structures, based on governing equations that take into account the diffusing of chloride ions and a mechanical steady state. As a result of this study, Corrosion Prediction System (CPS) is developed, and it can be used to determine an optimal time for repair and rehabilitation actions need to be taken. Futhermore, CPS assists the concrete mixing structures by predicting of chloride concentrations in concrete mixture, exposed to salt concentrations and service environment.

An experimental study on surface performance improvement of concrete influencing on resistance to chloride (콘크리트의 표면성능개선이 염소이온투과저항성에 미치는 영향에 관한 실험적 연구)

  • Kim, Jae-Sung;Kang, Suk-Pyo;Hong, Sung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.782-785
    • /
    • 2004
  • Salt attack is one of the serious deterioration factor with respect to the durability of concrete structure. Especially, in case of exposed rebar concrete structure in marine environment, corrosion of rebar is accelerated by penetration of $Cl^-$ from exterior. Through this path, volume of corroded rebar is increased about two and half times due to increased inner pressure originated from rust. As a consequence, the overall deterioration of concrete structure, namely, cracks, reduction of adhesive strength and pop-out is followed. In this paper, the effect of structure treatment of concrete on chloride resistance has been investigated. At the same time, the relationship among several characteristics, such as resistance to chloride, water absorption coefficient and surface hardness of concrete has been investigated. It is believed that surface performance improvement by the application of penetrative hardening agent influences on positively water absorption coefficient, surface hardness of concrete and resistance to chloride ion penetration.

  • PDF

An Experimental Study on Corrosion Resistance of Epoxy Coated Reinforcements (에폭시 도포철근의 내 부식성능에 관한 실험적 연구)

  • 오병환;엄주용;권지훈
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.4
    • /
    • pp.161-170
    • /
    • 1992
  • 근래 들어 철근 콘크리트에 있어서의 철근부식이 관심의 대상이 되고 있는데 그이유는 이 현상이 실제 구조물에서 광범위하게 발생함이 확인되었고 이로 인한 보수비용이 급증하였기 때문이다. 철근의 부식이 처음 거론된 것은 해양구조물과 내화학성 구조물에서였고 최근 들어서는 교량상판, 주차공간등 염기에 노출되어 철근 부식이 우려되는 각 종의 구조물에 광범위하게 그 대책이 연구되기에 이르렀다. 이와같은 철근부식이 제어방법으로는 첫째로 콘크리트의 수밀화를 들 수 있고 다음으로 콘크리트의 표면을 처리하거나 피복두께를 늘이는 방법이 있다. 마지막으로 철근자체에 방청성능을 직접 부여하여 방법에 속하는 에폭시 도포 철근의 기본적인 방청성능을 고찰하기 위해 수행되었다. 연구결과 에폭시 도포철근의 방청성능은 매우 우수함을 발견하였고 앞으로 활용이 기대되고 있다.