• 제목/요약/키워드: Salmonella genomic island 1

검색결과 2건 처리시간 0.015초

Molecular Characterization of Salmonella Genomic Island 1 in Proteus mirabilis Isolates from Chungcheong Province, Korea

  • Sung, Ji Youn;Kim, Semi;Kwon, GyeCheol;Koo, Sun Hoe
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권11호
    • /
    • pp.2052-2059
    • /
    • 2017
  • The emergence and dissemination of Salmonella genomic island 1 (SGI1) are strongly associated with the occurrence of multidrug-resistant (MDR) enterobacteria in humans and animals. Diverse SGI1s have been reported among Salmonella enterica and Proteus mirabilis in several countries. We aimed to characterize SGI1 in P. mirabilis isolates from humans and chickens in Chungcheong Province, Korea. A total of 44 P. mirabilis isolates were recovered from humans (n = 20) and chickens (n = 24). Antimicrobial susceptibility was determined by disk diffusion assay. To detect and characterize SGI1s, PCR amplification and PCR mapping experiments were performed. Repetitive extragenic palindromic-PCR (REP-PCR) was performed to assess the clonality of the isolates. The four P. mirabilis strains (16.7%) from chicken harbored a SGI1, whereas none of the isolates from clinical specimens contained SGI1. The SGI1s detected in our study were all confirmed as SGI1-PmABB harboring aminoglycoside-resistant genes (aacCA5 and aadA7). In P. mirabilis isolates, the presence of SGI1-PmABB was significantly correlated with high resistance rates of the isolates to antimicrobial agents, such as gentamicin, streptomycin, and spectinomycin. Moreover, the four SGI1-bearing isolates showed the same REP-PCR patterns and that suggested both horizontal and clonal spread of the isolates. This study is the first attempt to determine SGI1s in P. mirabilis isolates in Korea. We confirmed that P. mirabilis isolates carrying SGI1-PmABB were distributed at poultry farms in Korea. The present study emphasizes the need for continuous monitoring of SGI1s to prevent spreading of the MDR genomic islands among P. mirabilis isolates from humans and animals.

Comparative Genomic Analysis of Pathogenic Factors of Pectobacterium Species Isolated in South Korea Using Whole-Genome Sequencing

  • Jee, Samnyu;Kang, In-Jeong;Bak, Gyeryeong;Kang, Sera;Lee, Jeongtae;Heu, Sunggi;Hwang, Ingyu
    • The Plant Pathology Journal
    • /
    • 제38권1호
    • /
    • pp.12-24
    • /
    • 2022
  • In this study, we conducted whole-genome sequencing with six species of Pectobacterium composed of seven strains, JR1.1, BP201601.1, JK2.1, HNP201719, MYP201603, PZ1, and HC, for the analysis of pathogenic factors associated with the genome of Pectobacterium. The genome sizes ranged from 4,724,337 bp to 5,208,618 bp, with the GC content ranging from 50.4% to 52.3%. The average nucleotide identity was 98% among the two Pectobacterium species and ranged from 88% to 96% among the remaining six species. A similar distribution was observed in the carbohydrate-active enzymes (CAZymes) class and extracellular plant cell wall degrading enzymes (PCWDEs). HC showed the highest number of enzymes in CAZymes and the lowest number in the extracellular PCWDEs. Six strains showed four subsets, and HC demonstrated three subsets, except hasDEF, in type I secretion system, while the type II secretion system of the seven strains was conserved. Components of human pathogens, such as Salmonella pathogenicity island 1 type type III secretion system (T3SS) and effectors, were identified in PZ1; T3SSa was not identified in HC. Two putative effectors, including hrpK, were identified in seven strains along with dspEF. We also identified 13 structural genes, six regulator genes, and five accessory genes in the type VI secretion system (T6SS) gene cluster of six Pectobacterium species, along with the loss of T6SS in PZ1. HC had two subsets, and JK2.1 had three subsets of T6SS. With the GxSxG motif, the phospholipase A gene did locate among tssID and duf4123 genes in the T6SSa cluster of all strains. Important domains were identified in the vgrG/paar islands, including duf4123, duf2235, vrr-nuc, and duf3396.