• Title/Summary/Keyword: Salinometer

Search Result 4, Processing Time 0.018 seconds

Changes in Sodium Content by Type of Jangajji and Length of Storage Period-By Applying an Analysis Technique to Differentiate Solid Ingredients from Seasoning Liquid- (장아찌의 종류와 저장기간에 따른 나트륨 함량 변화 - 건더기와 양념(국물)의 구분 분석법을 적용하여 -)

  • Jiyu Choi;So-young Kim
    • The Korean Journal of Food And Nutrition
    • /
    • v.37 no.2
    • /
    • pp.88-99
    • /
    • 2024
  • This study aimed to provide an accurate estimate of sodium intake from jangajji by examining the changes in sodium content according to the type of jangajji and the length of storage period, specifically differentiating between the solid ingredients and the seasoning liquid. It focused on six types of jangajji: chili pepper, perilla leaf, onion, radish, garlic scape, and cucumber. The sodium content in the solid ingredients and the seasoning was measured using a salinometer and ICP-AES. The results indicated that across all types of jangajji, the seasoning liquid consistently contained significantly higher levels of sodium than the solid ingredients. When comparing the sodium content measured by ICP-AES with that from a salinometer, the salinometer readings were significantly lower for both the solid ingredients and the seasoning liquid in all types of jangajji. Additionally, when comparing the sodium content of the solid ingredients with that listed in the nation's representative nutritional databases, a substantial discrepancy was noted, with some cases potentially overstating the actual sodium intake from jangajji. Overall, this study suggests that an urgent review should be conducted to identify and resolve the causes of such discrepancies and accurately estimate the actual sodium intake from jangajji.

Comparison of sodium content of workplace and homemade meals through chemical analysis and salinity measurements

  • Shin, Eun-Kyung;Lee, Yeon-Kyung
    • Nutrition Research and Practice
    • /
    • v.8 no.5
    • /
    • pp.558-563
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Most Koreans consume nearly 70-80% of the total sodium through their dishes. The use of a salinometer to measure salinity is recommended to help individuals control their sodium intake. The purpose of this study was to compare sodium content through chemical analysis and salinity measurement in foods served by industry foodservice operations and homemade meals. MATERIALS/METHODS: Workplace and homemade meals consumed by employees in 15 cafeterias located in 8 districts in Daegu were collected and the sodium content was measured through chemical analysis and salinity measurements and then compared. The foods were categorized into 9 types of menus with 103 workplace meals and 337 homemade meals. RESULTS: Workplace meals did not differ significantly in terms of sodium content per 100 g of food but had higher sodium content via chemical analysis in roasted foods per portion. Homemade meals had higher broth salt content and higher salt content by chemical analysis per 100 g of roasted foods and hard-boiled foods. One-dish workplace meals had higher salinity (P < 0.05), while homemade broths and stews had higher sodium content (P < 0.05 and P < 0.01, respectively). The sodium content per 100 g of foods was higher in one-dish workplace meals (P < 0.05) and in homemade broths and stews (P < 0.01 and P < 0.05, respectively). CONCLUSIONS: The use of a salinometer may be recommended to estimate the sodium content in foods and control one's sodium intake within the daily intake target as a way to promote cooking bland foods at home. However, estimated and actual measured values may differ.

CTD Data Processing for CREAMS Expeditions: Thermal-lag Correction of Sea-Bird CTD

  • Kim, Kuh;Cho, Yang-Ki;Ossi, Hyong;Kim, Young-Gyu
    • Journal of the korean society of oceanography
    • /
    • v.35 no.4
    • /
    • pp.192-199
    • /
    • 2000
  • Standard CTD data processing recommended by Sea-Bird Electronics produced thermal-lag corrections larger than 0.1 psu for the data taken during the CREAMS expeditions in the northern part of the East/Japan Sea where a vertical temperature gradient frequently exceeds 1.0$^{\circ}$C/m in the upper 100 m near the sea surface. As the standard processing is based upon a recursive filter which was introduced by Lueck and Pickle (1990), coefficients of the recursive filter have been newly derived for the CREAMS data by minimizing the difference between salinities of downcast and upcast in temperature-salinity domain. The new coefficients are validated by comparison with salinities measured by a salinometer, AUTOSAL 8400B. An accurate correction for the thermal-lag is critical in identifying water masses at intermediate depth in the East/japan Sea.

  • PDF

Development of a Salt Taste Sensor for Improvement on Meal HabitDirection Method (식습관 개선을 위한 음식 짠맛센서 개발)

  • Yang, Gil-Mo;Seo, In-Ho;Kim, Gi-Young;Lee, Kang-Jin;Son, Jae-Yong;Mo, Chang-Yeon;Kim, Yong-Hoon;Park, Saet-Byoul
    • Journal of Biosystems Engineering
    • /
    • v.35 no.5
    • /
    • pp.310-315
    • /
    • 2010
  • The amount of salt intake of Korean people is 11.4 grams per a day, which is 2.3 times of the recommended daily salt intake by WHO - 5 grams of salt a day. The relationship between high salt consumption and increased risk of high blood pressure, observed not only in hypertensive but also in normotensive patients. High salt intake is also associated with an increased risk of heart attack, cerebral ischemia and osteoporosis. Therefore, this research is for developing a salt taste sensor to reduce sodium consumption and improve meal habits for the perception of a more bland taste of most foods. When the sensor was put into food sample, current intensity achieved with distribution cables. Current intensity was correlate with a simple equivalent of salt taste stimulus intensity. The salt taste sensor consists of salinity & temperature measuring probe, signal processing circuit and LCD display & LED warning light. When salinity is going over a set point, LCD displayer indicate salt taste on LCD panel by percent value (%), and at the same time, blue LED light change to red LED light. So we could know the grade of salt taste in soup before meals conveniently and objectively. The results show that operating range of 10 to $80^{\circ}C$ and accuracy of ${\pm}0.1%$ were achieved with an analysis time of about 2 or 3 sec. Moderate reductions in salt intake can help to avert adult diseases and lead a healthy life.