• Title/Summary/Keyword: Sales forecasting model

Search Result 65, Processing Time 0.027 seconds

Sales Forecasting Model for Apparel Products Using Machine Learning Technique - A Case Study on Forecasting Outerwear Items - (머신 러닝을 활용한 의류제품의 판매량 예측 모델 - 아우터웨어 품목을 중심으로 -)

  • Chae, Jin Mie;Kim, Eun Hie
    • Fashion & Textile Research Journal
    • /
    • v.23 no.4
    • /
    • pp.480-490
    • /
    • 2021
  • Sales forecasting is crucial for many retail operations. For apparel retailers, accurate sales forecast for the next season is critical to properly manage inventory and plan their supply chains. The challenge in this increases because apparel products are always new for the next season, have numerous variations, short life cycles, long lead times, and seasonal trends. In this study, a sales forecasting model is proposed for apparel products using machine learning techniques. The sales data pertaining to outerwear items for four years were collected from a Korean sports brand and filtered with outliers. Subsequently, the data were standardized by removing the effects of exogenous variables. The sales patterns of outerwear items were clustered by applying K-means clustering, and outerwear attributes associated with the specific sales-pattern type were determined by using a decision tree classifier. Six types of sales pattern clusters were derived and classified using a hybrid model of clustering and decision tree algorithm, and finally, the relationship between outerwear attributes and sales patterns was revealed. Each sales pattern can be used to predict stock-keeping-unit-level sales based on item attributes.

Estimation and Forecasting of Dynamic Effects of Price Increase on Sales Using Panel Data (패널자료를 이용한 가격인상에 따른 판매량의 동적변화 추정 및 예측)

  • Park Sung-Ho;Jun Duk-Bin
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.2
    • /
    • pp.157-167
    • /
    • 2006
  • Estimating the effects of price increase on a company's sales is important task faced by managers. If consumer has prior information on price increase or expects it, there would be stockpiling and subsequent drops in sales. In addition, consumer can suppress demand in the short run. These factors make the sales dynamic and unstable. In this paper we develop a time series model to evaluate the sales patterns with stockpiling and short-term suppression of demand and also propose a forecasting procedure. For estimation, we use panel data and extend the model to Bayesian hierarchical structure. By borrowing strength across cross-sectional units, this estimation scheme gives more robust and reasonable result than one from the individual estimation. Furthermore, the proposed scheme yields improved predictive power in the forecasting of hold-out sample periods.

LSTM-based Sales Forecasting Model

  • Hong, Jun-Ki
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1232-1245
    • /
    • 2021
  • In this study, prediction of product sales as they relate to changes in temperature is proposed. This model uses long short-term memory (LSTM), which has shown excellent performance for time series predictions. For verification of the proposed sales prediction model, the sales of short pants, flip-flop sandals, and winter outerwear are predicted based on changes in temperature and time series sales data for clothing products collected from 2015 to 2019 (a total of 1,865 days). The sales predictions using the proposed model show increases in the sale of shorts and flip-flops as the temperature rises (a pattern similar to actual sales), while the sale of winter outerwear increases as the temperature decreases.

Fashion Brand Sales Forecasting Analysis Using ARDL Time Series Model -Focusing on Brand and Advertising Endorser's Web Search Volume, Information Amount, and Brand Promotion- (ARDL 시계열 모형을 활용한 패션 브랜드의 매출 예측 분석 -패션 브랜드와 광고모델의 웹 검색량, 정보량, 가격할인 프로모션을 중심으로-)

  • Seo, Jooyeon;Kim, Hyojung;Park, Minjung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.5
    • /
    • pp.868-889
    • /
    • 2022
  • Fashion companies are using a big data approach as a key strategic analysis to predict and forecast sales. This study investigated the effectiveness of the past sales, web search volume, information amount, brand promotion, and the advertising endorser on the sales forecasting model. The study conducted the autoregressive distributed lag (ARDL) time series model using the internal and external social big data of a national fashion brand. Results indicated that the brand's past sales, search volume, promotion, and amount of advertising endorser information amount significantly affected the sales forecast, whereas the brand's advertising endorser search volume and information amount did not significantly influence the sales forecast. Moreover, the brand's promotion had the highest correlation with sales forecasting. This study adds to information-searching behavior theory by measuring consumers' brand involvement. Last, this study provides digital marketers with implications for developing profitable marketing strategies on the basis of consumers' interest in the brand and advertising endorser.

Lessons Learned and Challenges Encountered in Retail Sales Forecast

  • Song, Qiang
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.2
    • /
    • pp.196-209
    • /
    • 2015
  • Retail sales forecast is a special area of forecasting. Its unique characteristics call for unique data models and treatment, and unique forecasting processes. In this paper, we will address lessons learned and challenges encountered in retail sales forecast from a practical and technical perspective. In particular, starting with the data models of retail sales data, we proceed to address issues existing in estimating and processing each component in the data model. We will discuss how to estimate the multi-seasonal cycles in retail sales data, and the limitations of the existing methodologies. In addition, we will talk about the distinction between business events and forecast events, the methodologies used in event detection and event effect estimation, and the difficulties in compound event detection and effect estimation. For each of the issues and challenges, we will present our solution strategy. Some of the solution strategies can be generalized and could be helpful in solving similar forecast problems in different areas.

Sales Forecasting Model Considering the Local Environment

  • Kim, Chul Soo;Oh, Su Min;Park, So Yeon
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.849-858
    • /
    • 2012
  • Today, local environmental factors has an influence on our society. Local environmental factors, as well as weather-related natural phenomena, social phenomena are also included. In this paper, numeric factors and categorical factors were analyzed, looking for a local environmental factors affecting the company's sales.Sales model by performing a regression analysis based on this was implemented.Sales model considering the local environment had an accuracy of 88.89%.

Sales Volume Prediction Model for Temperature Change using Big Data Analysis (빅데이터 분석을 이용한 기온 변화에 대한 판매량 예측 모델)

  • Back, Seung-Hoon;Oh, Ji-Yeon;Lee, Ji-Su;Hong, Jun-Ki;Hong, Sung-Chan
    • The Journal of Bigdata
    • /
    • v.4 no.1
    • /
    • pp.29-38
    • /
    • 2019
  • In this paper, we propose a sales forecasting model that forecasts the sales volume of short sleeves and outerwear according to the temperature change by utilizing accumulated big data from the online shopping mall 'A' over the past five years to increase sales volume and efficient inventory management. The proposed model predicts sales of short sleeves and outerwear according to temperature changes in 2018 by analyzing sales volume of short sleeves and outerwear from 2014 to 2017. Using the proposed sales forecasting model, we compared the sales forecasts of 2018 with the actual sales volume and found that the error rates are ±1.5% and ±8% for short sleeve and outerwear respectively.

  • PDF

Estimation of Dynamic Effects of Price Increase on Sales Using Bayesian Hierarchical Model (베이지안 다계층모형을 이용한 가격인상에 따른 판매량의 동적변화 추정 및 예측)

  • Jeon, Deok-Bin;Park, Seong-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.798-805
    • /
    • 2005
  • Estimating the effects of price increase on a company's sales is important task faced by managers. If consumer has prior information on price increase or expect it, there would be stockpiling and subsequent drops in sales. In addition, consumer can suppress demand in the short run. Above factors make the sales dynamic and unstable. We develop a time series model to evaluate the sales patterns with stockpiling and short term suppression of demand and also propose a forecasting procedure. For estimation, we use panel data and extend the model to Bayesian hierarchical structure. By borrowing strength across cross-sectional units, this estimation scheme gives more robust and reasonable result than one from the individual estimation. Furthermore, the proposed scheme yields improved predictive power in the forecasting of hold-out sample periods.

  • PDF

A Study on the Seasonal Adjustment of Time Series and Demand Forecasting for Electronic Product Sales (전자제품 판매매출액 시계열의 계절 조정과 수요예측에 관한 연구)

  • Seo, Myeong-Yul;Rhee, Jong-Tae
    • Journal of Applied Reliability
    • /
    • v.3 no.1
    • /
    • pp.13-40
    • /
    • 2003
  • The seasonal adjustment is an essential process in analyzing the time series of economy and business. One of the powerful adjustment methods is X11-ARIMA Model which is popularly used in Korea. This method was delivered from Canada. However, this model has been developed to be appropriate for Canadian and American environment. Therefore, we need to review whether the X11-ARIMA Model could be used properly in Korea. In this study, we have applied the method to the annual sales of refrigerator sales in A electronic company. We appreciated the adjustment by result analyzing the time series components such as seasonal component, trend-cycle component, and irregular component, with the proposed method. Additionally, in order to improve the result of seasonal adjusted time series, we suggest the demand forecasting method base on autocorrelation and seasonality with the X11-ARIMA PROC.

  • PDF

Sales Pattern and Related Product Attributes of T-shirts (티셔츠 상품의 판매패턴과 연관된 상품속성)

  • Chae, Jin Mie;Kim, Eun Hie
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.6
    • /
    • pp.1053-1069
    • /
    • 2020
  • This study examined the sales pattern relationship with respect to product attributes to propose sales forecasting for fashion products. We analyzed 537 SKU sales data of T-shirts in the domestic sports brand using SAS program. The sales pattern of fashion products fluctuated and were influenced by exogenous factors; therefore, we removed the influence of exogenous factors found to be price discounts and holiday effects as a result of regression analysis. In addition, it was difficult to predict sales using the sales patterns of the same product since fashion products were released as new products every year. Therefore, the forecasting model was proposed using sales patterns of related product attributes when attributes were considered descriptive variables. We classified sales patterns using K-means clustering in order to explain the relationship between sales patterns and product attributes along with creating a decision tree classifier using attributes as input and sales patterns as output. As a result, the sales patterns of T-shirts were clustered into six types that featured the characteristic shape of peak and slope. It was also associated with the combination of product attributes and their values in regards to the proposed sales pattern prediction model.